Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
2b0daeff
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 2 年 前同步成功
通知
118
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2b0daeff
编写于
12月 15, 2021
作者:
S
sibo2rr
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add speed to vits
上级
54b72398
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
118 addition
and
59 deletion
+118
-59
docs/zh_CN/algorithm_introduction/ImageNet_models.md
docs/zh_CN/algorithm_introduction/ImageNet_models.md
+59
-59
docs/zh_CN/models/SwinTransformer.md
docs/zh_CN/models/SwinTransformer.md
+18
-0
docs/zh_CN/models/Twins.md
docs/zh_CN/models/Twins.md
+14
-0
docs/zh_CN/models/ViT_and_DeiT.md
docs/zh_CN/models/ViT_and_DeiT.md
+27
-0
未找到文件。
docs/zh_CN/algorithm_introduction/ImageNet_models.md
浏览文件 @
2b0daeff
...
@@ -330,28 +330,28 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多
...
@@ -330,28 +330,28 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考:
[
ViT_and_DeiT 系列模型文档
](
../models/ViT_and_DeiT.md
)
。
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考:
[
ViT_and_DeiT 系列模型文档
](
../models/ViT_and_DeiT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
------------------------|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 |
- | -
| 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_small_
<br/>
patch16_224 | 0.7769 | 0.9342 |
3.71 | 9.05 | 16.72
| 9.41 | 48.60 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 |
- | -
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_224 | 0.8195 | 0.9617 |
6.12 | 14.84 | 28.51
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 |
- | -
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar
)
|
| ViT_base_
<br/>
patch16_384 | 0.8414 | 0.9717 |
14.15 | 48.38 | 95.06
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 |
- | -
| 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar
)
|
| ViT_base_
<br/>
patch32_384 | 0.8176 | 0.9613 |
4.94 | 13.43 | 24.08
| 12.66 | 88.19 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 |
- | -
| 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
| ViT_large_
<br/>
patch16_224 | 0.8323 | 0.9650 |
15.53 | 49.50 | 94.09
| 59.65 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 |
- | -
| 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar
)
|
|ViT_large_
<br/>
patch16_384| 0.8513 | 0.9736 |
39.51 | 152.46 | 304.06
| 174.70 | 304.12 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 |
- | -
| 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar
)
|
|ViT_large_
<br/>
patch32_384| 0.8153 | 0.9608 |
11.44 | 36.09 | 70.63
| 44.24 | 306.48 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar
)
|
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
------------------------|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 |
- | -
| 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_tiny_
<br>
patch16_224 | 0.718 | 0.910 |
3.61 | 3.94 | 6.10
| 1.07 | 5.68 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 |
- | -
| 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
patch16_224 | 0.796 | 0.949 |
3.61 | 6.24 | 10.49
| 4.24 | 21.97 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 |
- | -
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_224 | 0.817 | 0.957 |
6.13 | 14.87 | 28.50
| 16.85 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 |
- | -
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_base_
<br>
patch16_384 | 0.830 | 0.962 |
14.12 | 48.80 | 97.60
| 49.35 | 86.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 |
- | -
| 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_tiny_
<br>
distilled_patch16_224 | 0.741 | 0.918 |
3.51 | 4.05 | 6.03
| 1.08 | 5.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 |
- | -
| 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_small_
<br>
distilled_patch16_224 | 0.809 | 0.953 |
3.70 | 6.20 | 10.53
| 4.26 | 22.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 |
- | -
| 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_224 | 0.831 | 0.964 |
6.17 | 14.94 | 28.58
| 16.93 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 |
- | -
| 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
| DeiT_base_
<br>
distilled_patch16_384 | 0.851 | 0.973 |
14.12 | 48.76 | 97.09
| 49.43 | 87.18 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar
)
|
<a
name=
"13"
></a>
<a
name=
"13"
></a>
...
@@ -360,18 +360,18 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
...
@@ -360,18 +360,18 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
RepVGG 系列模型文档
](
../models/RepVGG.md
)
。
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
RepVGG 系列模型文档
](
../models/RepVGG.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
------------------------------------------------------------------------------------------------------|
| RepVGG_A0 | 0.7131 | 0.9016 | | | 1.36 | 8.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar
)
|
| RepVGG_A0 | 0.7131 | 0.9016 | | |
|
1.36 | 8.31 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar
)
|
| RepVGG_A1 | 0.7380 | 0.9146 | | | 2.37 | 12.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar
)
|
| RepVGG_A1 | 0.7380 | 0.9146 | | |
|
2.37 | 12.79 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar
)
|
| RepVGG_A2 | 0.7571 | 0.9264 | | | 5.12 | 25.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar
)
|
| RepVGG_A2 | 0.7571 | 0.9264 | | |
|
5.12 | 25.50 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar
)
|
| RepVGG_B0 | 0.7450 | 0.9213 | | | 3.06 | 14.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar
)
|
| RepVGG_B0 | 0.7450 | 0.9213 | | |
|
3.06 | 14.34 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar
)
|
| RepVGG_B1 | 0.7773 | 0.9385 | | | 11.82 | 51.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar
)
|
| RepVGG_B1 | 0.7773 | 0.9385 | | |
|
11.82 | 51.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar
)
|
| RepVGG_B2 | 0.7813 | 0.9410 | | | 18.38 | 80.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar
)
|
| RepVGG_B2 | 0.7813 | 0.9410 | | |
|
18.38 | 80.32 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | 8.82 | 41.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar
)
|
| RepVGG_B1g2 | 0.7732 | 0.9359 | | |
|
8.82 | 41.36 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | 7.31 | 36.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar
)
|
| RepVGG_B1g4 | 0.7675 | 0.9335 | | |
|
7.31 | 36.13 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | 11.34 | 55.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar
)
|
| RepVGG_B2g4 | 0.7881 | 0.9448 | | |
|
11.34 | 55.78 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar
)
|
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | 16.07 | 75.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
| RepVGG_B3g4 | 0.7965 | 0.9485 | | |
|
16.07 | 75.63 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar
)
|
<a
name=
"14"
></a>
<a
name=
"14"
></a>
...
@@ -405,16 +405,16 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
...
@@ -405,16 +405,16 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
SwinTransformer 系列模型文档
](
../models/SwinTransformer.md
)
。
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
SwinTransformer 系列模型文档
](
../models/SwinTransformer.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 |
|
| 4.35 | 28.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
)
|
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 |
6.59 | 9.68 | 16.32
| 4.35 | 28.26 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 |
|
| 8.51 | 49.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar
)
|
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 |
12.54 | 17.07 | 28.08
| 8.51 | 49.56 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 |
|
| 15.13 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 |
13.37 | 23.53 | 39.11
| 15.13 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 |
|
| 44.45 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 |
19.52 | 64.56 | 123.30
| 44.45 | 87.70 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 |
|
| 15.13 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window7_224
<sup>
[
1]</sup> | 0.8487 | 0.9746 |
13.53 | 23.46 | 39.13
| 15.13 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 |
|
| 44.45 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_base_patch4_window12_384
<sup>
[
1]</sup> | 0.8642 | 0.9807 |
19.65 | 64.72 | 123.42
| 44.45 | 87.70 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 |
|
| 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar
)
|
| SwinTransformer_large_patch4_window7_224
<sup>
[
1]</sup> | 0.8596 | 0.9783 |
15.74 | 38.57 | 71.49
| 34.02 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 |
|
| 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar
)
|
| SwinTransformer_large_patch4_window12_384
<sup>
[
1]</sup> | 0.8719 | 0.9823 |
32.61 | 116.59 | 223.23
| 99.97 | 196.43 | [下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar
)
|
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
...
@@ -424,13 +424,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
...
@@ -424,13 +424,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
LeViT 系列模型文档
](
../models/LeViT.md
)
。
关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
LeViT 系列模型文档
](
../models/LeViT.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
------------------------------------------------------------ |
| LeViT_128S | 0.7598 | 0.9269 | | | 281 | 7.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar
)
|
| LeViT_128S | 0.7598 | 0.9269 | | |
|
281 | 7.42 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.9371 | | | 365 | 8.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_128 | 0.7810 | 0.9371 | | |
|
365 | 8.87 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar
)
|
| LeViT_192 | 0.7934 | 0.9446 | | | 597 | 10.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar
)
|
| LeViT_192 | 0.7934 | 0.9446 | | |
|
597 | 10.61 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar
)
|
| LeViT_256 | 0.8085 | 0.9497 | | | 1049 | 18.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar
)
|
| LeViT_256 | 0.8085 | 0.9497 | | |
|
1049 | 18.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar
)
|
| LeViT_384 | 0.8191 | 0.9551 | | | 2234 | 38.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar
)
|
| LeViT_384 | 0.8191 | 0.9551 | | |
|
2234 | 38.45 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar
)
|
**注**
:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
**注**
:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
...
@@ -440,14 +440,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
...
@@ -440,14 +440,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
Twins 系列模型文档
](
../models/Twins.md
)
。
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:
[
Twins 系列模型文档
](
../models/Twins.md
)
。
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
<br>
bs=1 | time(ms)
<br>
bs=4 |
time(ms)
<br/>
bs=8 |
FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
------------------------------------------------------------ |
| pcpvt_small | 0.8082 | 0.9552 |
|
|3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_small | 0.8082 | 0.9552 |
7.32 | 10.51 | 15.27
|3.67 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar
)
|
| pcpvt_base | 0.8242 | 0.9619 |
|
| 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_base | 0.8242 | 0.9619 |
12.20 | 16.22 | 23.16
| 6.44 | 43.83 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar
)
|
| pcpvt_large | 0.8273 | 0.9650 |
|
| 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| pcpvt_large | 0.8273 | 0.9650 |
16.47 | 22.90 | 32.73
| 9.50 | 60.99 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar
)
|
| alt_gvt_small | 0.8140 | 0.9546 |
|
|2.81 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_small | 0.8140 | 0.9546 |
6.94 | 9.01 | 12.27
|2.81 | 24.06 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar
)
|
| alt_gvt_base | 0.8294 | 0.9621 |
|
| 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| alt_gvt_base | 0.8294 | 0.9621 |
9.37 | 15.02 | 24.54
| 8.34 | 56.07 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar
)
|
| alt_gvt_large | 0.8331 | 0.9642 |
|
| 14.81 | 99.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar
)
|
| alt_gvt_large | 0.8331 | 0.9642 |
11.76 | 22.08 | 35.12
| 14.81 | 99.27 |
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams
)
|
[
下载链接
](
https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar
)
|
**注**
:与 Reference 的精度差异源于数据预处理不同。
**注**
:与 Reference 的精度差异源于数据预处理不同。
...
...
docs/zh_CN/models/SwinTransformer.md
浏览文件 @
2b0daeff
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
<a
name=
'1'
></a>
...
@@ -28,3 +29,20 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
...
@@ -28,3 +29,20 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
**注**
:与 Reference 的精度差异源于数据预处理不同。
**注**
:与 Reference 的精度差异源于数据预处理不同。
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ------------------------------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| SwinTransformer_tiny_patch4_window7_224 | 224 | 256 | 6.59 | 9.68 | 16.32 |
| SwinTransformer_small_patch4_window7_224 | 224 | 256 | 12.54 | 17.07 | 28.08 |
| SwinTransformer_base_patch4_window7_224 | 224 | 256 | 13.37 | 23.53 | 39.11 |
| SwinTransformer_base_patch4_window12_384 | 384 | 384 | 19.52 | 64.56 | 123.30 |
| SwinTransformer_base_patch4_window7_224
<sup>
[1]
</sup>
| 224 | 256 | 13.53 | 23.46 | 39.13 |
| SwinTransformer_base_patch4_window12_384
<sup>
[1]
</sup>
| 384 | 384 | 19.65 | 64.72 | 123.42 |
| SwinTransformer_large_patch4_window7_224
<sup>
[1]
</sup>
| 224 | 256 | 15.74 | 38.57 | 71.49 |
| SwinTransformer_large_patch4_window12_384
<sup>
[1]
</sup>
| 384 | 384 | 32.61 | 116.59 | 223.23 |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
docs/zh_CN/models/Twins.md
浏览文件 @
2b0daeff
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
<a
name=
'1'
></a>
...
@@ -24,3 +25,16 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
...
@@ -24,3 +25,16 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
| alt_gvt_large | 0.8331 | 0.9642 | 0.837 | - | 14.8 | 99.2 |
| alt_gvt_large | 0.8331 | 0.9642 | 0.837 | - | 14.8 | 99.2 |
**注**
:与 Reference 的精度差异源于数据预处理不同。
**注**
:与 Reference 的精度差异源于数据预处理不同。
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| pcpvt_small | 224 | 256 | 7.32 | 10.51 | 15.27 |
| pcpvt_base | 224 | 256 | 12.20 | 16.22 | 23.16 |
| pcpvt_large | 224 | 256 | 16.47 | 22.90 | 32.73 |
| alt_gvt_small | 224 | 256 | 6.94 | 9.01 | 12.27 |
| alt_gvt_base | 224 | 256 | 9.37 | 15.02 | 24.54 |
| alt_gvt_large | 224 | 256 | 11.76 | 22.08 | 35.12 |
docs/zh_CN/models/ViT_and_DeiT.md
浏览文件 @
2b0daeff
...
@@ -4,6 +4,7 @@
...
@@ -4,6 +4,7 @@
*
[
1. 概述
](
#1
)
*
[
1. 概述
](
#1
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
2. 精度、FLOPS 和参数量
](
#2
)
*
[
3. 基于V100 GPU 的预测速度
](
#3
)
<a
name=
'1'
></a>
<a
name=
'1'
></a>
...
@@ -41,3 +42,29 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
...
@@ -41,3 +42,29 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | | |
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | | |
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
<a
name=
'3'
></a>
## 3. 基于 V100 GPU 的预测速度
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| -------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| ViT_small_
<br/>
patch16_224 | 256 | 224 | 3.71 | 9.05 | 16.72 |
| ViT_base_
<br/>
patch16_224 | 256 | 224 | 6.12 | 14.84 | 28.51 |
| ViT_base_
<br/>
patch16_384 | 384 | 384 | 14.15 | 48.38 | 95.06 |
| ViT_base_
<br/>
patch32_384 | 384 | 384 | 4.94 | 13.43 | 24.08 |
| ViT_large_
<br/>
patch16_224 | 256 | 224 | 15.53 | 49.50 | 94.09 |
| ViT_large_
<br/>
patch16_384 | 384 | 384 | 39.51 | 152.46 | 304.06 |
| ViT_large_
<br/>
patch32_384 | 384 | 384 | 11.44 | 36.09 | 70.63 |
| Models | Crop Size | Resize Short Size | FP32
<br/>
Batch Size=1
<br/>
(ms) | FP32
<br/>
Batch Size=4
<br/>
(ms) | FP32
<br/>
Batch Size=8
<br/>
(ms) |
| ------------------------------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| DeiT_tiny_
<br>
patch16_224 | 256 | 224 | 3.61 | 3.94 | 6.10 |
| DeiT_small_
<br>
patch16_224 | 256 | 224 | 3.61 | 6.24 | 10.49 |
| DeiT_base_
<br>
patch16_224 | 256 | 224 | 6.13 | 14.87 | 28.50 |
| DeiT_base_
<br>
patch16_384 | 384 | 384 | 14.12 | 48.80 | 97.60 |
| DeiT_tiny_
<br>
distilled_patch16_224 | 256 | 224 | 3.51 | 4.05 | 6.03 |
| DeiT_small_
<br>
distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 |
| DeiT_base_
<br>
distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 |
| DeiT_base_
<br>
distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 |
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录