diff --git a/ppcls/configs/StrategySearch/person.yaml b/ppcls/configs/StrategySearch/person.yaml index 6d105d7ecffcc10f40b7e0262616c2b4c8cbe740..5804580cdbb35c994a76e30f39d0df1d242684f4 100644 --- a/ppcls/configs/StrategySearch/person.yaml +++ b/ppcls/configs/StrategySearch/person.yaml @@ -3,6 +3,7 @@ distill_config_file: ppcls/configs/cls_demo/person/Distillation/PPLCNet_x1_0_dis gpus: 0,1,2,3 output_dir: output/search_person +search_times: 3 search_dict: - search_key: lrs replace_config: @@ -27,6 +28,7 @@ search_dict: search_values: - [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] - [0.0, 0.4, 0.4, 0.8, 0.8, 1.0] + - [1.0. 1.0. 1.0. 1.0. 1.0. 1.0] teacher: rm_keys: - Arch.lr_mult_list diff --git a/tools/search_strategy.py b/tools/search_strategy.py index 58d8c171bd2760b9a7df3f910d834f53daa118cb..b4325d65ae23f2b1c420b9dfd44c7a79e5f52bbf 100644 --- a/tools/search_strategy.py +++ b/tools/search_strategy.py @@ -7,6 +7,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.abspath(os.path.join(__dir__, '../'))) import subprocess +import numpy as np + from ppcls.utils import config @@ -18,7 +20,8 @@ def get_result(log_dir): return res -def search_train(search_list, base_program, base_output_dir, search_key, config_replace_value, model_name): +def search_train(search_list, base_program, base_output_dir, search_key, + config_replace_value, model_name, search_times=1): best_res = 0. best = search_list[0] all_result = {} @@ -28,15 +31,19 @@ def search_train(search_list, base_program, base_output_dir, search_key, config_ program += ["-o", "{}={}".format(v, search_i)] if v == "Arch.name": model_name = search_i - output_dir = "{}/{}_{}".format(base_output_dir, search_key, search_i).replace(".", "_") - program += ["-o", "Global.output_dir={}".format(output_dir)] - process = subprocess.Popen(program) - process.communicate() - res = get_result("{}/{}".format(output_dir, model_name)) - all_result[str(search_i)] = res - if res > best_res: + res_list = [] + for j in range(search_times): + output_dir = "{}/{}_{}_{}".format(base_output_dir, search_key, search_i, j).replace(".", "_") + program += ["-o", "Global.output_dir={}".format(output_dir)] + process = subprocess.Popen(program) + process.communicate() + res = get_result("{}/{}".format(output_dir, model_name)) + res_list.append(res) + all_result[str(search_i)] = res_list + + if np.mean(res_list) > best_res: best = search_i - best_res = res + best_res = np.mean(res_list) all_result["best"] = best return all_result @@ -52,13 +59,15 @@ def search_strategy(): base_program = ["python3.7", "-m", "paddle.distributed.launch", "--gpus={}".format(gpus), "tools/train.py", "-c", base_config_file] base_output_dir = configs["output_dir"] + search_times = configs["search_times"] search_dict = configs.get("search_dict") all_results = {} for search_i in search_dict: search_key = search_i["search_key"] search_values = search_i["search_values"] replace_config = search_i["replace_config"] - res = search_train(search_values, base_program, base_output_dir, search_key, replace_config, model_name) + res = search_train(search_values, base_program, base_output_dir, + search_key, replace_config, model_name, search_times) all_results[search_key] = res best = res.get("best") for v in replace_config: