未验证 提交 1df66418 编写于 作者: H huangxu96 提交者: GitHub

Merge branch 'develop' into cp_fp16_training

## 介绍
复杂的模型有利于提高模型的性能,但也导致模型中存在一定冗余,模型量化将全精度缩减到定点数减少这种冗余,达到减少模型计算复杂度,提高模型推理性能的目的。
模型量化可以在基本不损失模型的精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。
本教程将介绍如何使用飞桨模型压缩库PaddleSlim做PaddleClas模型的压缩。
[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) 集成了模型剪枝、量化(包括量化训练和离线量化)、蒸馏和神经网络搜索等多种业界常用且领先的模型压缩功能,如果您感兴趣,可以关注并了解。
在开始本教程之前,建议先了解[PaddleClas模型的训练方法](../../../docs/zh_CN/tutorials/quick_start.md)以及[PaddleSlim](https://paddleslim.readthedocs.io/zh_CN/latest/index.html)
## 快速开始
量化多适用于轻量模型在移动端的部署,当训练出一个模型后,如果希望进一步的压缩模型大小并加速预测,可使用量化的方法压缩模型。
模型量化主要包括五个步骤:
1. 安装 PaddleSlim
2. 准备训练好的模型
3. 量化训练
4. 导出量化推理模型
5. 量化模型预测部署
### 1. 安装PaddleSlim
* 可以通过pip install的方式进行安装。
```bash
pip3.7 install paddleslim==2.0.0
```
* 如果获取PaddleSlim的最新特性,可以从源码安装。
```bash
git clone https://github.com/PaddlePaddle/PaddleSlim.git
cd Paddleslim
python3.7 setup.py install
```
### 2. 准备训练好的模型
PaddleClas提供了一系列训练好的[模型](../../../docs/zh_CN/models/models_intro.md),如果待量化的模型不在列表中,需要按照[常规训练](../../../docs/zh_CN/tutorials/getting_started.md)方法得到训练好的模型。
### 3. 量化训练
量化训练包括离线量化训练和在线量化训练,在线量化训练效果更好,需加载预训练模型,在定义好量化策略后即可对模型进行量化。
量化训练的代码位于`deploy/slim/quant/quant.py` 中,训练指令如下:
* CPU/单机单卡启动
```bash
python3.7 deploy/slim/quant/quant.py \
-c configs/MobileNetV3/MobileNetV3_large_x1_0.yaml \
-o pretrained_model="./MobileNetV3_large_x1_0_pretrained"
```
* 单机单卡/单机多卡/多机多卡启动
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python3.7 -m paddle.distributed.launch \
--gpus="0,1,2,3,4,5,6,7" \
deploy/slim/quant/quant.py \
-c configs/MobileNetV3/MobileNetV3_large_x1_0.yaml \
-o pretrained_model="./MobileNetV3_large_x1_0_pretrained"
```
* 下面是量化`MobileNetV3_large_x1_0`模型的训练示例脚本。
```bash
# 下载预训练模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams
# 启动训练,这里如果因为显存限制,batch size无法设置过大,可以将batch size和learning rate同比例缩小。
python3.7 -m paddle.distributed.launch \
--gpus="0,1,2,3,4,5,6,7" \
deploy/slim/quant/quant.py \
-c configs/MobileNetV3/MobileNetV3_large_x1_0.yaml \
-o pretrained_model="./MobileNetV3_large_x1_0_pretrained"
-o LEARNING_RATE.params.lr=0.13 \
-o epochs=100
```
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
### 4. 导出模型
在得到量化训练保存的模型后,可以将其导出为inference model,用于预测部署:
```bash
python3.7 deploy/slim/quant/export_model.py \
-m MobileNetV3_large_x1_0 \
-p output/MobileNetV3_large_x1_0/best_model/ppcls \
-o ./MobileNetV3_large_x1_0_infer/ \
--img_size=224 \
--class_dim=1000
```
### 5. 量化模型部署
上述步骤导出的量化模型,参数精度仍然是FP32,但是参数的数值范围是int8,导出的模型可以通过PaddleLite的opt模型转换工具完成模型转换。
量化模型部署的可参考 [移动端模型部署](../../lite/readme.md)
## 量化训练超参数建议
* 量化训练时,建议加载常规训练得到的预训练模型,加速量化训练收敛。
* 量化训练时,建议初始学习率修改为常规训练的`1/20~1/10`,同时将训练epoch数修改为常规训练的`1/5~1/2`,其他配置信息不建议修改。
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
from ppcls.modeling import architectures
from ppcls.utils.save_load import load_dygraph_pretrain
import paddle
import paddle.nn.functional as F
from paddle.jit import to_static
from paddleslim.dygraph.quant import QAT
from pact_helper import get_default_quant_config
def parse_args():
def str2bool(v):
return v.lower() in ("true", "t", "1")
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str)
parser.add_argument("-p", "--pretrained_model", type=str)
parser.add_argument("-o", "--output_path", type=str, default="./inference")
parser.add_argument("--class_dim", type=int, default=1000)
parser.add_argument("--load_static_weights", type=str2bool, default=False)
parser.add_argument("--img_size", type=int, default=224)
return parser.parse_args()
class Net(paddle.nn.Layer):
def __init__(self, net, class_dim, model=None):
super(Net, self).__init__()
self.pre_net = net(class_dim=class_dim)
self.model = model
def forward(self, inputs):
x = self.pre_net(inputs)
if self.model == "GoogLeNet":
x = x[0]
x = F.softmax(x)
return x
def main():
args = parse_args()
net = architectures.__dict__[args.model]
model = Net(net, args.class_dim, args.model)
# get QAT model
quant_config = get_default_quant_config()
# TODO(littletomatodonkey): add PACT for export model
# quant_config["activation_preprocess_type"] = "PACT"
quanter = QAT(config=quant_config)
quanter.quantize(model)
load_dygraph_pretrain(
model.pre_net,
path=args.pretrained_model,
load_static_weights=args.load_static_weights)
model.eval()
save_path = os.path.join(args.output_path, "inference")
quanter.save_quantized_model(
model,
save_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, 3, args.img_size, args.img_size], dtype='float32')
])
print('inference QAT model is saved to {}'.format(save_path))
if __name__ == "__main__":
main()
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
def get_default_quant_config():
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
'weight_preprocess_type': None,
# activation preprocess type, default is None and no preprocessing is performed.
'activation_preprocess_type': None,
# weight quantize type, default is 'channel_wise_abs_max'
'weight_quantize_type': 'channel_wise_abs_max',
# activation quantize type, default is 'moving_average_abs_max'
'activation_quantize_type': 'moving_average_abs_max',
# weight quantize bit num, default is 8
'weight_bits': 8,
# activation quantize bit num, default is 8
'activation_bits': 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
'dtype': 'int8',
# window size for 'range_abs_max' quantization. default is 10000
'window_size': 10000,
# The decay coefficient of moving average, default is 0.9
'moving_rate': 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
'quantizable_layer_type': ['Conv2D', 'Linear'],
}
return quant_config
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..', '..', '..')))
sys.path.append(
os.path.abspath(os.path.join(__dir__, '..', '..', '..', 'tools')))
import paddle
from paddleslim.dygraph.quant import QAT
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program
from pact_helper import get_default_quant_config
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
default='configs/ResNet/ResNet50.yaml',
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
paddle.seed(12345)
config = get_config(args.config, overrides=args.override, show=True)
# assign the place
use_gpu = config.get("use_gpu", True)
place = paddle.set_device('gpu' if use_gpu else 'cpu')
trainer_num = paddle.distributed.get_world_size()
use_data_parallel = trainer_num != 1
config["use_data_parallel"] = use_data_parallel
if config["use_data_parallel"]:
paddle.distributed.init_parallel_env()
net = program.create_model(config.ARCHITECTURE, config.classes_num)
# prepare to quant
quant_config = get_default_quant_config()
quant_config["activation_preprocess_type"] = "PACT"
quanter = QAT(config=quant_config)
quanter.quantize(net)
optimizer, lr_scheduler = program.create_optimizer(
config, parameter_list=net.parameters())
init_model(config, net, optimizer)
if config["use_data_parallel"]:
net = paddle.DataParallel(net)
train_dataloader = Reader(config, 'train', places=place)()
if config.validate:
valid_dataloader = Reader(config, 'valid', places=place)()
last_epoch_id = config.get("last_epoch", -1)
best_top1_acc = 0.0 # best top1 acc record
best_top1_epoch = last_epoch_id
for epoch_id in range(last_epoch_id + 1, config.epochs):
net.train()
# 1. train with train dataset
program.run(train_dataloader, config, net, optimizer, lr_scheduler,
epoch_id, 'train')
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
net.eval()
with paddle.no_grad():
top1_acc = program.run(valid_dataloader, config, net, None,
None, epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
best_top1_epoch = epoch_id
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, "best_model")
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, best_top1_epoch)
logger.info(message)
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(net, optimizer, model_path, epoch_id)
if __name__ == '__main__':
args = parse_args()
main(args)
...@@ -105,7 +105,7 @@ def init_model(config, net, optimizer=None): ...@@ -105,7 +105,7 @@ def init_model(config, net, optimizer=None):
load model from checkpoint or pretrained_model load model from checkpoint or pretrained_model
""" """
checkpoints = config.get('checkpoints') checkpoints = config.get('checkpoints')
if checkpoints: if checkpoints and optimizer is not None:
assert os.path.exists(checkpoints + ".pdparams"), \ assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints) "Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \ assert os.path.exists(checkpoints + ".pdopt"), \
...@@ -114,7 +114,7 @@ def init_model(config, net, optimizer=None): ...@@ -114,7 +114,7 @@ def init_model(config, net, optimizer=None):
opti_dict = paddle.load(checkpoints + ".pdopt") opti_dict = paddle.load(checkpoints + ".pdopt")
net.set_dict(para_dict) net.set_dict(para_dict)
optimizer.set_state_dict(opti_dict) optimizer.set_state_dict(opti_dict)
logger.info("Finish initing model from {}".format(checkpoints)) logger.info("Finish load checkpoints from {}".format(checkpoints))
return return
pretrained_model = config.get('pretrained_model') pretrained_model = config.get('pretrained_model')
...@@ -129,7 +129,7 @@ def init_model(config, net, optimizer=None): ...@@ -129,7 +129,7 @@ def init_model(config, net, optimizer=None):
path=pretrained_model, path=pretrained_model,
load_static_weights=load_static_weights) load_static_weights=load_static_weights)
logger.info( logger.info(
logger.coloring("Finish initing model from {}".format( logger.coloring("Finish load pretrained model from {}".format(
pretrained_model), "HEADER")) pretrained_model), "HEADER"))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册