未验证 提交 1c59abe1 编写于 作者: G gaotingquan

docs: add en doc

上级 991a2a3b
# Paddle2ONNX: Converting To ONNX and Deployment
This section introduce that how to convert the Paddle Inference Model ResNet50_vd to ONNX model and deployment based on ONNX engine.
## 1. Installation
First, you need to install Paddle2ONNX and onnxruntime. Paddle2ONNX is a toolkit to convert Paddle Inference Model to ONNX model. Please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_en.md) for more information.
- Paddle2ONNX Installation
```
python3.7 -m pip install paddle2onnx
```
- ONNX Installation
```
python3.7 -m pip install onnxruntime
```
## 2. Converting to ONNX
Download the Paddle Inference Model ResNet50_vd:
```
cd deploy
mkdir models && cd models
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
cd ..
```
Converting to ONNX model:
```
paddle2onnx --model_dir=./models/ResNet50_vd_infer/ \
--model_filename=inference.pdmodel \
--params_filename=inference.pdiparams \
--save_file=./models/ResNet50_vd_infer/inference.onnx \
--opset_version=10 \
--enable_onnx_checker=True
```
After running the above command, the ONNX model file converted would be save in `./models/ResNet50_vd_infer/`.
## 3. Deployment
Deployment with ONNX model, command is as shown below.
```
python3.7 python/predict_cls.py \
-c configs/inference_cls.yaml \
-o Global.use_onnx=True \
-o Global.use_gpu=False \
-o Global.inference_model_dir=./models/ResNet50_vd_infer
```
The prediction results:
```
ILSVRC2012_val_00000010.jpeg: class id(s): [153, 204, 229, 332, 155], score(s): [0.69, 0.10, 0.02, 0.01, 0.01], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Lhasa, Lhasa apso', 'Old English sheepdog, bobtail', 'Angora, Angora rabbit', 'Shih-Tzu']
```
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
- [6.3 Deployment with C++](#6.3) - [6.3 Deployment with C++](#6.3)
- [6.4 Deployment as Service](#6.4) - [6.4 Deployment as Service](#6.4)
- [6.5 Deployment on Mobile](#6.5) - [6.5 Deployment on Mobile](#6.5)
- [6.6 To ONNX and Deployment](#6.6) - [6.6 Converting To ONNX and Deployment](#6.6)
<a name="1"></a> <a name="1"></a>
...@@ -274,7 +274,7 @@ The results: ...@@ -274,7 +274,7 @@ The results:
### 4.1 SKL-UGI Knowledge Distillation ### 4.1 SKL-UGI Knowledge Distillation
SKL-UGI is a simple but effective knowledge distillation algrithem proposed by PaddleClas. Please refer to [SKL-UGI 知识蒸馏](../advanced_tutorials/ssld_en.md) for more details. SKL-UGI is a simple but effective knowledge distillation algrithem proposed by PaddleClas. Please refer to [SKL-UGI 知识蒸馏](../advanced_tutorials/distillation/distillation_en.md) for more details.
<a name="4.1.1"></a> <a name="4.1.1"></a>
...@@ -450,7 +450,7 @@ PaddleClas provides an example of how to deploy on mobile by Paddle-Lite. Please ...@@ -450,7 +450,7 @@ PaddleClas provides an example of how to deploy on mobile by Paddle-Lite. Please
<a name="6.6"></a> <a name="6.6"></a>
### 6.6 To ONNX and Deployment ### 6.6 Converting To ONNX and Deployment
Paddle2ONNX support convert Paddle Inference model to ONNX model. And you can deploy with ONNX model on different inference engine, such as TensorRT, OpenVINO, MNN/TNN, NCNN and so on. About Paddle2ONNX details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX). Paddle2ONNX support convert Paddle Inference model to ONNX model. And you can deploy with ONNX model on different inference engine, such as TensorRT, OpenVINO, MNN/TNN, NCNN and so on. About Paddle2ONNX details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX).
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册