Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
1974871d
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1974871d
编写于
4月 19, 2020
作者:
C
cuicheng01
提交者:
GitHub
4月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update Tricks.md
上级
711bfbaa
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
6 addition
and
6 deletion
+6
-6
docs/zh_CN/models/Tricks.md
docs/zh_CN/models/Tricks.md
+6
-6
未找到文件。
docs/zh_CN/models/Tricks.md
浏览文件 @
1974871d
...
...
@@ -24,14 +24,14 @@ batch_size是训练神经网络中的一个重要的超参数,该值决定了
过拟合是机器学习中常见的一个名词,简单理解即为模型在训练数据上表现很好,但在测试数据上表现较差,在卷积神经网络中,同样存在过拟合的问题,为了避免过拟合,很多正则方式被提出,其中,weight_decay是其中一个广泛使用的避免过拟合的方式。Weight_decay等价于在最终的损失函数后添加L2正则化,L2正则化使得网络的权重倾向于选择更小的值,最终整个网络中的参数值更趋向于0,模型的泛化性能相应提高。在各大深度学习框架的实现中,该值表达的含义是L2正则前的系数,在paddle框架中,该值的名称是l2_decay,所以以下都称其为l2_decay。该系数越大,表示加入的正则越强,模型越趋于欠拟合状态。在训练ImageNet的任务中,大多数的网络将该参数值设置为1e-4,在一些小的网络如MobileNet系列网络中,为了避免网络欠拟合,该值设置为1e-5~4e-5之间。当然,该值的设置也和具体的数据集有关系,当任务的数据集较大时,网络本身趋向于欠拟合状态,可以将该值适当减小,当任务的数据集较小时,网络本身趋向于过拟合状态,可以将该值适当增大。下表展示了MobileNetV1_x0_25在ImageNet-1k上使用不同l2_decay的精度情况。由于MobileNetV1_x0_25是一个比较小的网络,所以l2_decay过大会使网络趋向于欠拟合状态,所以在该网络中,相对1e-4,3e-5是更好的选择。
| 模型 | L2_decay | Train acc1/acc5 | Test acc1/acc5 |
|
-------------------|----------|-----------------|----------------
|
|
:--:|:--:|:--:|:--:
|
| MobileNetV1_x0_25 | 1e-4 | 43.79%/67.61% | 50.41%/74.70% |
| MobileNetV1_x0_25 | 3e-5 | 47.38%/70.83% | 51.45%/75.45% |
另外,该值的设置也和训练过程中是否使用其他正则化有关系。如果训练过程中的数据预处理比较复杂,相当于训练任务变的更难,可以将该值适当减小,下表展示了在ImageNet-1k上,ResNet50在使用randaugment预处理方式后使用不同l2_decay的精度。容易观察到,在任务变难后,使用更小的l2_decay有助于模型精度的提升。
| 模型 | L2_decay | Train acc1/acc5 | Test acc1/acc5 |
|
----------|----------|-----------------|----------------
|
|
:--:|:--:|:--:|:--:
|
| ResNet50 | 1e-4 | 75.13%/90.42% | 77.65%/93.79% |
| ResNet50 | 7e-5 | 75.56%/90.55% | 78.04%/93.74% |
...
...
@@ -42,14 +42,14 @@ Label_smoothing是深度学习中的一种正则化方法,其全称是 Label S
在训练ImageNet-1k的实验中,我们发现,ResNet50大小级别及其以上的模型在使用label_smooting后,精度有稳定的提升。下表展示了ResNet50_vd在使用label_smoothing前后的精度指标。
| 模型 | Use_label_smoothing | Test acc1 |
|
-------------|---------------------|-----------
|
|
:--:|:--:|:--:
|
| ResNet50_vd | 0 | 77.9% |
| ResNet50_vd | 1 | 78.4% |
同时,由于label_smoohing相当于一种正则方式,在相对较小的模型上,精度提升不明显甚至会有所下降,下表展示了ResNet18在ImageNet-1k上使用label_smoothing前后的精度指标。可以明显看到,在使用label_smoothing后,精度有所下降。
| 模型 | Use_label_smoohing | Train acc1/acc5 | Test acc1/acc5 |
|
----------|--------------------|-----------------|----------------
|
|
:--:|:--:|:--:|:--:
|
| ResNet18 | 0 | 69.81%/87.70% | 70.98%/89.92% |
| ResNet18 | 1 | 68.00%/86.56% | 70.81%/89.89% |
...
...
@@ -60,7 +60,7 @@ Label_smoothing是深度学习中的一种正则化方法,其全称是 Label S
在ImageNet-1k数据的标准预处理中,random_crop函数中定义了scale和ratio两个值,两个值分别确定了图片crop的大小和图片的拉伸程度,其中scale的默认取值范围是0.08-1(lower_scale-upper_scale),ratio的默认取值范围是3/4-4/3(lower_ratio-upper_ratio)。在非常小的网络训练中,此类数据增强会使得网络欠拟合,导致精度有所下降。为了提升网络的精度,可以使其数据增强变的更弱,即增大图片的crop区域或者减弱图片的拉伸变换程度。我们可以分别通过增大lower_scale的值或缩小lower_ratio与upper_scale的差距来实现更弱的图片变换。下表列出了使用不同lower_scale训练MobileNetV2_x0_25的精度,可以看到,增大图片的crop区域面积后训练精度和验证精度均有提升。
| 模型 | Scale取值范围 | Train_acc1/acc5 | Test_acc1/acc5 |
|
-------------------|-----------|-----------------|----------------
|
|
:--:|:--:|:--:|:--:
|
| MobileNetV2_x0_25 | [0.08,1] | 50.36%/72.98% | 52.35%/75.65% |
| MobileNetV2_x0_25 | [0.2,1] | 54.39%/77.08% | 53.18%/76.14% |
...
...
@@ -68,7 +68,7 @@ Label_smoothing是深度学习中的一种正则化方法,其全称是 Label S
一般来说,数据集的规模对性能影响至关重要,但是图片的标注往往比较昂贵,所以有标注的图片数量往往比较稀少,在这种情况下,数据的增广尤为重要。在训练ImageNet-1k的标准数据增广中,主要使用了random_crop与random_flip两种数据增广方式,然而,近些年,越来越多的数据增广方式被提出,如cutout、mixup、cutmix、AutoAugment等。实验表明,这些数据的增广方式可以有效提升模型的精度,下表列出了ResNet50在8种不同的数据增广方式的表现,可以看出,相比baseline,所有的数据增广方式均有收益,其中cutmix是目前最有效的数据增广。更多数据增广的介绍请参考
[
**数据增广章节**
](
https://paddleclas.readthedocs.io/zh_CN/latest/advanced_tutorials/image_augmentation/ImageAugment.html
)
| 模型 | 数据增广方式 | Test top-1 |
|
----------|----------------|------------
|
|
:--:|:--:|:--:
|
| ResNet50 | 标准变换 | 77.31% |
| ResNet50 | Auto-Augment | 77.95% |
| ResNet50 | Mixup | 78.28% |
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录