diff --git a/docs/en/ImageNet_models.md b/docs/en/ImageNet_models.md deleted file mode 100644 index 99cbbd26616bbf6af31385073a1bae84b0047fc5..0000000000000000000000000000000000000000 --- a/docs/en/ImageNet_models.md +++ /dev/null @@ -1,348 +0,0 @@ -### ImageNet Model zoo overview - -Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows. - -* CPU evaluation environment is based on Snapdragon 855 (SD855). -* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times). - - -Curves of accuracy to the inference time of common server-side models are shown as follows. - -![](../images/models/T4_benchmark/t4.fp32.bs1.main_fps_top1.png) - - -Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows. - -![](../images/models/mobile_arm_storage.png) - -![](../images/models/mobile_arm_top1.png) - - -### SSLD pretrained models -Accuracy and inference time of the prtrained models based on SSLD distillation are as follows. More detailed information can be refered to [SSLD distillation tutorial](../en/advanced_tutorials/distillation/distillation_en.md). - -* Server-side distillation pretrained models - -| Model | Top-1 Acc | Reference
Top-1 Acc | Acc gain | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------| -| ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) | -| ResNet50_vd_
ssld | 0.824 | 0.791 | 0.033 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) | -| ResNet50_vd_
ssld_v2 | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) | -| ResNet101_vd_
ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) | -| Res2Net50_vd_
26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | -| Res2Net101_vd_
26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | -| HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) | -| HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 34.435 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) | -| SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 57.83 | 128.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) | - - -* Mobile-side distillation pretrained models - -| Model | Top-1 Acc | Reference
Top-1 Acc | Acc gain | SD855 time(ms)
bs=1 | Flops(G) | Params(M) | Model size(M) | Download Address | -|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------| -| MobileNetV1_
ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) | -| MobileNetV2_
ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | -| MobileNetV3_
small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | -| MobileNetV3_
large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | -| MobileNetV3_small_
x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | -| GhostNet_
x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | - - -* Note: `Reference Top-1 Acc` means accuracy of pretrained models which are trained on ImageNet1k dataset. - - - -### ResNet and Vd series - -Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to [ResNet and Vd series tutorial](../en/models/ResNet_and_vd_en.md). - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------| -| ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_pretrained.pdparams) | -| ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams) | -| ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_pretrained.pdparams) | -| ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_pretrained.pdparams) | -| ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet34_vd_ssld_pretrained.pdparams) | -| ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_pretrained.pdparams) | -| ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams) | -| ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams) | -| ResNet50_vd_v2 | 0.7984 | 0.9493 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_v2_pretrained.pdparams) | -| ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_pretrained.pdparams) | -| ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_pretrained.pdparams) | -| ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_pretrained.pdparams) | -| ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet152_vd_pretrained.pdparams) | -| ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet200_vd_pretrained.pdparams) | -| ResNet50_vd_
ssld | 0.8239 | 0.9610 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams) | -| ResNet50_vd_
ssld_v2 | 0.8300 | 0.9640 | 3.53131 | 8.09057 | 8.67 | 25.58 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_v2_pretrained.pdparams) | -| ResNet101_vd_
ssld | 0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet101_vd_ssld_pretrained.pdparams) | - - - -### Mobile series - -Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](../en/models/Mobile_en.md). - -| Model | Top-1 Acc | Top-5 Acc | SD855 time(ms)
bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address | -|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------| -| MobileNetV1_
x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_25_pretrained.pdparams) | -| MobileNetV1_
x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_5_pretrained.pdparams) | -| MobileNetV1_
x0_75 | 0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_x0_75_pretrained.pdparams) | -| MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_pretrained.pdparams) | -| MobileNetV1_
ssld | 0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV1_ssld_pretrained.pdparams) | -| MobileNetV2_
x0_25 | 0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams) | -| MobileNetV2_
x0_5 | 0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams) | -| MobileNetV2_
x0_75 | 0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams) | -| MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams) | -| MobileNetV2_
x1_5 | 0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams) | -| MobileNetV2_
x2_0 | 0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams) | -| MobileNetV2_
ssld | 0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams) | -| MobileNetV3_
large_x1_25 | 0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_25_pretrained.pdparams) | -| MobileNetV3_
large_x1_0 | 0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_pretrained.pdparams) | -| MobileNetV3_
large_x0_75 | 0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_75_pretrained.pdparams) | -| MobileNetV3_
large_x0_5 | 0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams) | -| MobileNetV3_
large_x0_35 | 0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_35_pretrained.pdparams) | -| MobileNetV3_
small_x1_25 | 0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_25_pretrained.pdparams) | -| MobileNetV3_
small_x1_0 | 0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_pretrained.pdparams) | -| MobileNetV3_
small_x0_75 | 0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_75_pretrained.pdparams) | -| MobileNetV3_
small_x0_5 | 0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_5_pretrained.pdparams) | -| MobileNetV3_
small_x0_35 | 0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_pretrained.pdparams) | -| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | -| MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | -| MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | -| ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) | -| ShuffleNetV2_
x0_25 | 0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams) | -| ShuffleNetV2_
x0_33 | 0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams) | -| ShuffleNetV2_
x0_5 | 0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams) | -| ShuffleNetV2_
x1_5 | 0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams) | -| ShuffleNetV2_
x2_0 | 0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams) | -| ShuffleNetV2_
swish | 0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams) | -| GhostNet_
x0_5 | 0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams) | -| GhostNet_
x1_0 | 0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams) | -| GhostNet_
x1_3 | 0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams) | -| GhostNet_
x1_3_ssld | 0.7938 | 0.9449 | 19.9825 | 0.44 | 7.3 | 29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams) | - - - -### SEResNeXt and Res2Net series - -Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to [SEResNext and_Res2Net series tutorial](../en/models/SEResNext_and_Res2Net_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------| -| Res2Net50_
26w_4s | 0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams) | -| Res2Net50_vd_
26w_4s | 0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams) | -| Res2Net50_
14w_8s | 0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams) | -| Res2Net101_vd_
26w_4s | 0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s | 0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams) | -| Res2Net200_vd_
26w_4s_ssld | 0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | -| ResNeXt50_
32x4d | 0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams) | -| ResNeXt50_vd_
32x4d | 0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams) | -| ResNeXt50_
64x4d | 0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams) | -| ResNeXt50_vd_
64x4d | 0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams) | -| ResNeXt101_
32x4d | 0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams) | -| ResNeXt101_vd_
32x4d | 0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams) | -| ResNeXt101_
64x4d | 0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams) | -| ResNeXt101_vd_
64x4d | 0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams) | -| ResNeXt152_
32x4d | 0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams) | -| ResNeXt152_vd_
32x4d | 0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams) | -| ResNeXt152_
64x4d | 0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams) | -| ResNeXt152_vd_
64x4d | 0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams) | -| SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams) | -| SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams) | -| SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams) | -| SE_ResNeXt50_
32x4d | 0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams) | -| SE_ResNeXt50_vd_
32x4d | 0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams) | -| SE_ResNeXt101_
32x4d | 0.7939 | 0.9443 | 18.82604 | 25.31814 | 15.02 | 46.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams) | -| SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams) | - - - -### DPN and DenseNet series - -Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to [DPN and DenseNet series tutorial](../en/models/DPN_DenseNet_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------| -| DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | -| DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | -| DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | -| DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | -| DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | -| DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 4.03 | 10.78 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams) | -| DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 12.54 | 36.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams) | -| DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 22.22 | 58.46 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams) | -| DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 35.06 | 82.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams) | -| DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 30.51 | 75.36 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams) | - - -### HRNet series - -Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](../en/models/HRNet_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------| -| HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_pretrained.pdparams) | -| HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.14 | 21.29 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W18_C_ssld_pretrained.pdparams) | -| HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W30_C_pretrained.pdparams) | -| HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W32_C_pretrained.pdparams) | -| HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W40_C_pretrained.pdparams) | -| HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W44_C_pretrained.pdparams) | -| HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_pretrained.pdparams) | -| HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W48_C_ssld_pretrained.pdparams) | -| HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HRNet_W64_C_pretrained.pdparams) | -| SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 | 57.83 | 128.97 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_HRNet_W64_C_ssld_pretrained.pdparams) | - - - -### Inception series - -Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to [Inception series tutorial](../en/models/Inception_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------| -| GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 2.88 | 8.46 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams) | -| Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams) | -| Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 18.16 | 26.73 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | -| Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams) | -| Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 27.37 | 39.52 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | -| Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams) | -| InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 11.46 | 23.83 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV3_pretrained.pdparams) | -| InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams) | - - - -### EfficientNet and ResNeXt101_wsl series - -Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to [EfficientNet and ResNeXt101_wsl series tutorial](../en/models/EfficientNet_and_ResNeXt101_wsl_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------| -| ResNeXt101_
32x8d_wsl | 0.8255 | 0.9674 | 18.52528 | 34.25319 | 29.14 | 78.44 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x16d_wsl | 0.8424 | 0.9726 | 25.60395 | 71.88384 | 57.55 | 152.66 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x32d_wsl | 0.8497 | 0.9759 | 54.87396 | 160.04337 | 115.17 | 303.11 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams) | -| ResNeXt101_
32x48d_wsl | 0.8537 | 0.9769 | 99.01698256 | 315.91261 | 173.58 | 456.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams) | -| Fix_ResNeXt101_
32x48d_wsl | 0.8626 | 0.9797 | 160.0838242 | 595.99296 | 354.23 | 456.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | -| EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.72 | 5.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams) | -| EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 1.27 | 7.52 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams) | -| EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.85 | 8.81 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams) | -| EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 3.43 | 11.84 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams) | -| EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 8.29 | 18.76 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams) | -| EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 19.51 | 29.61 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams) | -| EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 36.27 | 42 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams) | -| EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 72.35 | 64.92 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams) | -| EfficientNetB0_
small | 0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams) | - - - -### ResNeSt and RegNet series - -Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to [ResNeSt and RegNet series tutorial](../en/models/ResNeSt_RegNet_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| ResNeSt50_
fast_1s1x64d | 0.8035 | 0.9528 | 3.45405 | 8.72680 | 8.68 | 26.3 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | -| ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 | 10.78 | 27.5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) | -| RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams) | - - - -### Transformer series - -Accuracy and inference time metrics of ViT and DeiT series models are shown as follows. More detailed information can be refered to [Transformer series tutorial](../en/models/Transformer_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------| -| ViT_small_
patch16_224 | 0.7769 | 0.9342 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | -| ViT_base_
patch16_224 | 0.8195 | 0.9617 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | -| ViT_base_
patch16_384 | 0.8414 | 0.9717 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | -| ViT_base_
patch32_384 | 0.8176 | 0.9613 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | -| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | | 307 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | -| ViT_large_
patch16_384 | 0.8513 | 0.9736 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | -| ViT_large_
patch32_384 | 0.8153 | 0.9608 | - | - | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | -| | | | | | | | | - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------| -| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | - | - | | 5 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | -| DeiT_small_
patch16_224 | 0.796 | 0.949 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | -| DeiT_base_
patch16_224 | 0.817 | 0.957 | - | - | | 86 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | -| DeiT_base_
patch16_384 | 0.830 | 0.962 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | -| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | - | - | | 6 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | -| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | | 22 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | -| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | | 87 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | -| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | | 88 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | -| | | | | | | | | - - - - -### RepVGG - -Accuracy and inference time metrics of RepVGG series models are shown as follows. More detailed information can be refered to [RepVGG series tutorial](../en/models/RepVGG_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| RepVGG_A0 | 0.7131 | 0.9016 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | -| RepVGG_A1 | 0.7380 | 0.9146 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | -| RepVGG_A2 | 0.7571 | 0.9264 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | -| RepVGG_B0 | 0.7450 | 0.9213 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | -| RepVGG_B1 | 0.7773 | 0.9385 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | -| RepVGG_B2 | 0.7813 | 0.9410 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | -| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | -| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | -| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | -| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | - - - -### MixNet - -Accuracy and inference time metrics of MixNet series models are shown as follows. More detailed information can be refered to [MixNet series tutorial](../en/models/MixNet_en.md). - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(M) | Params(M) | Download Address | -| -------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| MixNet_S | 0.7628 | 0.9299 | | | 252.977 | 4.167 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | -| MixNet_M | 0.7767 | 0.9364 | | | 357.119 | 5.065 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | -| MixNet_L | 0.7860 | 0.9437 | | | 579.017 | 7.384 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | - - - -### ReXNet - -Accuracy and inference time metrics of ReXNet series models are shown as follows. More detailed information can be refered to [ReXNet series tutorial](../en/models/ReXNet_en.md). - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | -| ReXNet_1_0 | 0.7746 | 0.9370 | | | 0.415 | 4.838 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | -| ReXNet_1_3 | 0.7913 | 0.9464 | | | 0.683 | 7.611 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | -| ReXNet_1_5 | 0.8006 | 0.9512 | | | 0.900 | 9.791 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | -| ReXNet_2_0 | 0.8122 | 0.9536 | | | 1.561 | 16.449 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | -| ReXNet_3_0 | 0.8209 | 0.9612 | | | 3.445 | 34.833 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | - - - -### Others - -Accuracy and inference time metrics of AlexNet, SqueezeNet series, VGG series and DarkNet53 models are shown as follows. More detailed information can be refered to [Others](../en/models/Others_en.md). - - -| Model | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | Flops(G) | Params(M) | Download Address | -|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------| -| AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | -| SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 1.550 | 1.240 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | -| SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.690 | 1.230 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | -| VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 15.090 | 132.850 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG11_pretrained.pdparams) | -| VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 22.480 | 133.030 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG13_pretrained.pdparams) | -| VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 30.810 | 138.340 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG16_pretrained.pdparams) | -| VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 39.130 | 143.650 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/VGG19_pretrained.pdparams) | -| DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | diff --git a/docs/zh_CN/faq_series/faq_2021_s2.md b/docs/zh_CN/faq_series/faq_2021_s2.md new file mode 100644 index 0000000000000000000000000000000000000000..07d74345736c84a02656dcd1bc20920587610c0e --- /dev/null +++ b/docs/zh_CN/faq_series/faq_2021_s2.md @@ -0,0 +1,101 @@ +# 图像识别常见问题汇总 - 2021 第2季 + + +## 目录 +* [第1期](#第1期)(2021.07.08) + + + +## 第1期 + +### Q1.1: 目前使用的主体检测模型检测在某些场景中会有误检? + +**A**:目前的主体检测模型训练时使用了COCO、Object365、RPC、LogoDet等公开数据集,如果被检测数据是类似工业质检等于常见类别差异较大的数据,需要基于目前的检测模型重新微调训练。 + +### Q1.2: 添加图片后建索引报`assert text_num >= 2`错? + +**A**:请确保data_file.txt中图片路径和图片名称中间的间隔为单个table,而不是空格。 + +### Q1.3: 识别模块预测时报`Illegal instruction`错? + +**A**:可能是编译生成的库文件与您的环境不兼容,导致程序报错,如果报错,推荐参考[向量检索教程](../../../deploy/vector_search/README.md)重新编译库文件。 + +### Q1.4 主体检测是每次只输出一个主体检测框吗? + +**A**:主体检测这块的输出数量是可以通过配置文件配置的。在配置文件中Global.threshold控制检测的阈值,小于该阈值的检测框被舍弃,Global.max_det_results控制最大返回的结果数,这两个参数共同决定了输出检测框的数量。 + +### Q1.5 训练主体检测模型的数据是如何选择的?换成更小的模型会有损精度吗? + +**A**:训练数据是在COCO、Object365、RPC、LogoDet等公开数据集中随机抽取的子集,小模型精度可能会有一些损失,后续我们也会尝试下更小的检测模型。关于主体检测模型的更多信息请参考[主体检测](../application/mainbody_detection.md)。 + +### Q1.6 识别模型怎么在预训练模型的基础上进行微调训练? + +**A**:识别模型的微调训练和分类模型的微调训练类似,识别模型可以加载商品的预训练模型],训练过程可以参考[识别模型训练](../tutorials/getting_started_retrieval.md),后续我们也会持续细化这块的文档。 + +### Q1.7 PaddleClas和PaddleDetection区别 + +**A**:PaddleClas是一个兼主体检测、图像分类、图像检索于一体的图像识别repo,用于解决大部分图像识别问题,用户可以很方便的使用PaddleClas来解决小样本、多类别的图像识别问题。PaddleDetection提供了目标检测、关键点检测、多目标跟踪等能力,方便用户定位图像中的感兴趣的点和区域,被广泛应用于工业质检、遥感图像检测、无人巡检等项目。 + +### Q1.8 PaddleClas 2.2和PaddleClas 2.1完全兼容吗? + +**A**:PaddleClas2.2相对PaddleClas2.1新增了metric learning模块,主体检测模块、向量检索模块。另外,也提供了商品识别、车辆识别、logo识别和动漫人物识别等4个场景应用示例。用户可以基于PaddleClas 2.2快速构建图像识别系统。在图像分类模块,二者的使用方法类似,可以参考[图像分类示例](../tutorials/getting_started.md)快速迭代和评估。新增的metric learning模块,可以参考[metric learning示例](../tutorials/getting_started_retrieval.md)。另外,新版本暂时还不支持fp16、dali训练,也暂时不支持多标签训练,这块内容将在不久后支持。 + +### Q1.9 训练metric learning时,每个epoch中,无法跑完所有mini-batch,为什么? + +**A**:在训练metric learning时,使用的Sampler是DistributedRandomIdentitySampler,该Sampler不会采样全部的图片,导致会让每一个epoch采样的数据不是所有的数据,所以无法跑完显示的mini-batch是正常现象。后续我们会优化下打印的信息,尽可能减少给大家带来的困惑。 + +### Q1.10 有些图片没有识别出结果,为什么? + +**A**:在配置文件(如inference_product.yaml)中,`IndexProcess.score_thres`中会控制被识别的图片与库中的图片的余弦相似度的最小值。当余弦相似度小于该值时,不会打印结果。您可以根据自己的实际数据调整该值。 + +### Q1.11 为什么有一些图片检测出的结果就是原图? + +**A**:主体检测模型会返回检测框,但事实上为了让后续的识别模型更加准确,在返回检测框的同时也返回了原图。后续会根据原图或者检测框与库中的图片的相似度排序,相似度最高的库中图片的标签即为被识别图片的标签。 + +### Q1.12 使用`circle loss`还需加`triplet loss`吗? + +**A**:`circle loss`是统一了样本对学习和分类学习的两种形式,如果是分类学习的形式的话,可以增加`triplet loss`。 + +### Q1.13 hub serving方式启动某个模块,怎么添加该模块的参数呢? + +**A**:具体可以参考[hub serving参数](../../../deploy/hubserving/clas/params.py)。 + +### Q1.14 模型训练出nan,为什么? + +**A**: + +1.确保正确加载预训练模型, 最简单的加载方式添加参数`-o Arch.pretrained=True`即可; + +2.模型微调时,学习率不要太大,如设置0.001就好。 + + +### Q1.15 SSLD中,大模型在500M数据上预训练后蒸馏小模型,然后在1M数据上蒸馏finetune小模型? + +**A**:步骤如下: + +1.基于facebook开源的`ResNeXt101-32x16d-wsl`模型 去蒸馏得到了`ResNet50-vd`模型; + +2.用这个`ResNet50-vd`,在500W数据集上去蒸馏`MobilNetV3`; + +3.考虑到500W的数据集的分布和100W的数据分布不完全一致,所以这块,在100W上的数据上又finetune了一下,精度有微弱的提升。 + + +### Q1.16 如果不是识别开源的四个方向的图片,该使用哪个识别模型? + +**A**:建议使用商品识别模型,一来是因为商品覆盖的范围比较广,被识别的图片是商品的概率更大,二来是因为商品识别模型的训练数据使用了5万类别的数据,泛化能力更好,特征会更鲁棒一些。 + +### Q1.17 最后使用512维的向量,为什么不用1024或者其他维度的呢? + +**A**:使用维度小的向量,为了加快计算,在实际使用过程中,可能使用128甚至更小。一般来说,512的维度已经够大,能充分表示特征了。 + +### Q1.18 训练SwinTransformer,loss出现nan + +**A**:训练SwinTransformer的话,需要使用paddle-dev去训练,安装方式参考[paddlepaddle安装方式](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/develop/install/pip/linux-pip.html),后续paddlepaddle-2.1也会同时支持。 + +### Q1.19 新增底库数据需要重新构建索引吗? + +**A**:这一版需要重新构建索引,未来版本会支持只构建新增图片的索引。 + +### Q1.20 PaddleClas 的`train_log`文件在哪里? + +**A**:在保存权重的路径中存放了`train.log`。