diff --git a/ppcls/engine/train/utils.py b/ppcls/engine/train/utils.py index 7f64104da9b745e020c70b5804329ca96a6f35df..dc1868bee192e0245feee9fcbfd200900059f160 100644 --- a/ppcls/engine/train/utils.py +++ b/ppcls/engine/train/utils.py @@ -39,7 +39,7 @@ def update_loss(trainer, loss_dict, batch_size): def log_info(trainer, batch_size, epoch_id, iter_id): lr_msg = ", ".join([ - "lr_{}: {:.8f}".format(i + 1, lr.get_lr()) + "lr({}): {:.8f}".format(lr.__class__.__name__, lr.get_lr()) for i, lr in enumerate(trainer.lr_sch) ]) metric_msg = ", ".join([ diff --git a/ppcls/optimizer/__init__.py b/ppcls/optimizer/__init__.py index a440eac463e2a5ebd74cf676b2487973baea9546..f8414fed3dc69983ff1e55310e4d454371aa0593 100644 --- a/ppcls/optimizer/__init__.py +++ b/ppcls/optimizer/__init__.py @@ -44,10 +44,9 @@ def build_lr_scheduler(lr_config, epochs, step_each_epoch): # model_list is None in static graph def build_optimizer(config, epochs, step_each_epoch, model_list=None): - config = copy.deepcopy(config) - optim_config = config["Optimizer"] + optim_config = copy.deepcopy(config) if isinstance(optim_config, dict): - # convert {'name': xxx, **optim_cfg} to [{name: {scope: xxx, **optim_cfg}}] + # convert {'name': xxx, **optim_cfg} to [{'name': {'scope': xxx, **optim_cfg}}] optim_name = optim_config.pop("name") optim_config: List[Dict[str, Dict]] = [{ optim_name: { @@ -61,19 +60,19 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): """NOTE: Currently only support optim objets below. 1. single optimizer config. - 2. next level uner Arch, such as Arch.backbone, Arch.neck, Arch.head. - 3. loss which has parameters, such as CenterLoss. + 2. model(entire Arch), backbone, neck, head. + 3. loss(entire Loss), specific loss listed in ppcls/loss/__init__.py. """ for optim_item in optim_config: - # optim_cfg = {optim_name: {scope: xxx, **optim_cfg}} + # optim_cfg = {optim_name: {'scope': xxx, **optim_cfg}} # step1 build lr optim_name = list(optim_item.keys())[0] # get optim_name optim_scope = optim_item[optim_name].pop('scope') # get optim_scope optim_cfg = optim_item[optim_name] # get optim_cfg lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch) - logger.debug("build lr ({}) for scope ({}) success..".format( - lr, optim_scope)) + logger.info("build lr ({}) for scope ({}) success..".format( + lr.__class__.__name__, optim_scope)) # step2 build regularization if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None: if 'weight_decay' in optim_cfg: @@ -84,8 +83,8 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): reg_name = reg_config.pop('name') + 'Decay' reg = getattr(paddle.regularizer, reg_name)(**reg_config) optim_cfg["weight_decay"] = reg - logger.debug("build regularizer ({}) for scope ({}) success..". - format(reg, optim_scope)) + logger.info("build regularizer ({}) for scope ({}) success..". + format(reg.__class__.__name__, optim_scope)) # step3 build optimizer if 'clip_norm' in optim_cfg: clip_norm = optim_cfg.pop('clip_norm') @@ -93,30 +92,42 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None): else: grad_clip = None optim_model = [] - for i in range(len(model_list)): - if len(model_list[i].parameters()) == 0: - continue - if optim_scope == "all": - # optimizer for all - optim_model.append(model_list[i]) - else: - if optim_scope.endswith("Loss"): - # optimizer for loss - for m in model_list[i].sublayers(True): - if m.__class_name == optim_scope: - optim_model.append(m) - else: - # opmizer for module in model, such as backbone, neck, head... - if hasattr(model_list[i], optim_scope): - optim_model.append(getattr(model_list[i], optim_scope)) - assert len(optim_model) == 1, \ - "Invalid optim model for optim scope({}), number of optim_model={}".format(optim_scope, len(optim_model)) + # for static graph + if model_list is None: + optim = getattr(optimizer, optim_name)( + learning_rate=lr, grad_clip=grad_clip, + **optim_cfg)(model_list=optim_model) + return optim, lr + + # for dynamic graph + if optim_scope == "all": + optim_model = model_list + elif optim_scope == "model": + optim_model = [model_list[0], ] + elif optim_scope in ["backbone", "neck", "head"]: + optim_model = [getattr(model_list[0], optim_scope, None), ] + elif optim_scope == "loss": + optim_model = [model_list[1], ] + else: + optim_model = [ + model_list[1].loss_func[i] + for i in range(len(model_list[1].loss_func)) + if model_list[1].loss_func[i].__class__.__name__ == optim_scope + ] + optim_model = [ + optim_model[i] for i in range(len(optim_model)) + if (optim_model[i] is not None + ) and (len(optim_model[i].parameters()) > 0) + ] + assert len(optim_model) > 0, \ + f"optim_model is empty for optim_scope({optim_scope})" + optim = getattr(optimizer, optim_name)( learning_rate=lr, grad_clip=grad_clip, **optim_cfg)(model_list=optim_model) - logger.debug("build optimizer ({}) for scope ({}) success..".format( - optim, optim_scope)) + logger.info("build optimizer ({}) for scope ({}) success..".format( + optim.__class__.__name__, optim_scope)) optim_list.append(optim) lr_list.append(lr) return optim_list, lr_list