提交 133ea4f7 编写于 作者: D dongshuilong

merge release_2.5

......@@ -29,22 +29,18 @@
<img src="https://user-images.githubusercontent.com/11568925/189877049-d17ddcea-22d2-44ab-91fe-36d12af3add8.png" width = "200" height = "200"/>
</div>
- 🔥️ 2022.9.13发布[PP-ShiTuV2](./docs/zh_CN/PPShiTu/PPShiTuV2_introduction.md),recall1精度提升8个点,覆盖[20+识别场景](./docs/zh_CN/introduction/ppshitu_application_scenarios.md),新增[库管理工具](./deploy/shitu_index_manager/)[Android Demo](./docs/zh_CN/quick_start/quick_start_recognition.md)全新体验。
- 🔥️ 2022.9.13发布[PP-ShiTuV2](docs/zh_CN/models/PP-ShiTu/README.md),recall1精度提升8个点,覆盖[20+识别场景](docs/zh_CN/deployment/PP-ShiTu/application_scenarios.md),新增[库管理工具](./deploy/shitu_index_manager/)[Android Demo](./docs/zh_CN/quick_start/quick_start_recognition.md)全新体验。
- 2022.9.4 新增[生鲜产品自主结算范例库](./docs/zh_CN/samples/Fresh_Food_Recogniiton/README.md),具体内容可以在AI Studio上体验。
- 2022.6.15 发布[PULC超轻量图像分类实用方案](docs/zh_CN/PULC/PULC_train.md),CPU推理3ms,精度比肩SwinTransformer,覆盖人、车、OCR场景九大常见任务。
- 2022.6.15 发布[PULC超轻量图像分类实用方案](docs/zh_CN/training/PULC.md),CPU推理3ms,精度比肩SwinTransformer,覆盖人、车、OCR场景九大常见任务。
- 2022.5.23 新增[人员出入管理范例库](https://aistudio.baidu.com/aistudio/projectdetail/4094475),具体内容可以在 AI Studio 上体验。
- 2022.5.20 上线[PP-HGNet](./docs/zh_CN/models/ImageNet1k/PP-HGNet.md), [PP-LCNetv2](./docs/zh_CN/models/ImageNet1k/PP-LCNetV2.md)
- [more](docs/zh_CN/version_history.md)
- 2022.5.20 上线[PP-HGNet](./docs/zh_CN/models/PP-HGNet.md), [PP-LCNetv2](./docs/zh_CN/models/PP-LCNetV2.md)
- [more](./docs/zh_CN/others/update_history.md)
## 特性
PaddleClas发布了[PP-HGNet](docs/zh_CN/models/PP-HGNet.md)[PP-LCNetv2](docs/zh_CN/models/PP-LCNetV2.md)[PP-LCNet](docs/zh_CN/models/PP-LCNet.md)[SSLD半监督知识蒸馏方案](docs/zh_CN/advanced_tutorials/ssld.md)等算法,
并支持多种图像分类、识别相关算法,在此基础上打造[PULC超轻量图像分类方案](docs/zh_CN/PULC/PULC_quickstart.md)[PP-ShiTu图像识别系统](./docs/zh_CN/quick_start/quick_start_recognition.md)
PaddleClas发布了[PP-HGNet](docs/zh_CN/models/ImageNet1k/PP-HGNet.md)[PP-LCNetv2](docs/zh_CN/models/ImageNet1k/PP-LCNetV2.md)[PP-LCNet](docs/zh_CN/models/ImageNet1k/PP-LCNet.md)[SSLD半监督知识蒸馏方案](docs/zh_CN/training/advanced/ssld.md)等算法,
并支持多种图像分类、识别相关算法,在此基础上打造[PULC超轻量图像分类方案](docs/zh_CN/quick_start/PULC.md)[PP-ShiTu图像识别系统](./docs/zh_CN/quick_start/quick_start_recognition.md)
![](https://user-images.githubusercontent.com/11568925/189267545-7a6eefa0-b4fc-4ed0-ae9d-7c6d53f59798.png)
......@@ -59,7 +55,7 @@ PaddleClas发布了[PP-HGNet](docs/zh_CN/models/PP-HGNet.md)、[PP-LCNetv2](docs
## 快速体验
PULC超轻量图像分类方案快速体验:[点击这里](docs/zh_CN/PULC/PULC_quickstart.md)
PULC超轻量图像分类方案快速体验:[点击这里](docs/zh_CN/quick_start/PULC.md)
PP-ShiTu图像识别快速体验:[点击这里](./docs/zh_CN/quick_start/quick_start_recognition.md)
......@@ -75,66 +71,66 @@ PP-ShiTuV2 Android Demo APP,可扫描如下二维码,下载体验
- 基于PP-ShiTu v2的生鲜品自助结算: [点击这里](./docs/zh_CN/samples/Fresh_Food_Recogniiton/README.md)
- 基于PULC人员出入视频管理: [点击这里](./docs/zh_CN/samples/Personnel_Access/README.md)
- 基于 PP-ShiTu 的智慧商超商品识别:[点击这里](./docs/zh_CN/Goods_Recognition/README.md)
- 基于 PP-ShiTu 的智慧商超商品识别:[点击这里](./docs/zh_CN/samples/Goods_Recognition/README.md)
- 基于PP-ShiTu电梯内电瓶车入室识别:[点击这里](./docs/zh_CN/samples//Electromobile_In_Elevator_Detection/README.md)
## 文档教程
- [环境准备](docs/zh_CN/installation/install_paddleclas.md)
- [PP-ShiTuV2图像识别系统介绍](./docs/zh_CN/PPShiTu/PPShiTuV2_introduction.md)
- [环境准备](docs/zh_CN/installation.md)
- [PP-ShiTuV2图像识别系统介绍](docs/zh_CN/models/PP-ShiTu/README.md)
- [图像识别快速体验](docs/zh_CN/quick_start/quick_start_recognition.md)
- [20+应用场景库](docs/zh_CN/introduction/ppshitu_application_scenarios.md)
- [20+应用场景库](docs/zh_CN/deployment/PP-ShiTu/application_scenarios.md)
- 子模块算法介绍及模型训练
- [主体检测](./docs/zh_CN/image_recognition_pipeline/mainbody_detection.md)
- [特征提取模型](./docs/zh_CN/image_recognition_pipeline/feature_extraction.md)
- [向量检索](./docs/zh_CN/image_recognition_pipeline/vector_search.md)
- [哈希编码](docs/zh_CN/image_recognition_pipeline/deep_hashing.md)
- [主体检测](docs/zh_CN/training/PP-ShiTu/mainbody_detection.md)
- [特征提取模型](docs/zh_CN/training/PP-ShiTu/feature_extraction.md)
- [向量检索](docs/zh_CN/deployment/PP-ShiTu/vector_search.md)
- [哈希编码](docs/zh_CN/training/PP-ShiTu/deep_hashing.md)
- PipeLine 推理部署
- [基于python预测引擎推理](docs/zh_CN/inference_deployment/python_deploy.md#2)
- [基于python预测引擎推理](docs/zh_CN/deployment/image_classification/python.md#2)
- [基于C++预测引擎推理](deploy/cpp_shitu/readme.md)
- [服务化部署](docs/zh_CN/inference_deployment/recognition_serving_deploy.md)
- [端侧部署](docs/zh_CN/inference_deployment/lite_shitu.md)
- [库管理工具](docs/zh_CN/inference_deployment/shitu_gallery_manager.md)
- [PULC超轻量图像分类实用方案](docs/zh_CN/PULC/PULC_train.md)
- [超轻量图像分类快速体验](docs/zh_CN/PULC/PULC_quickstart.md)
- [超轻量图像分类模型库](docs/zh_CN/PULC/PULC_model_list.md)
- [PULC有人/无人分类模型](docs/zh_CN/PULC/PULC_person_exists.md)
- [PULC人体属性识别模型](docs/zh_CN/PULC/PULC_person_attribute.md)
- [PULC佩戴安全帽分类模型](docs/zh_CN/PULC/PULC_safety_helmet.md)
- [PULC交通标志分类模型](docs/zh_CN/PULC/PULC_traffic_sign.md)
- [PULC车辆属性识别模型](docs/zh_CN/PULC/PULC_vehicle_attribute.md)
- [PULC有车/无车分类模型](docs/zh_CN/PULC/PULC_car_exists.md)
- [PULC含文字图像方向分类模型](docs/zh_CN/PULC/PULC_text_image_orientation.md)
- [PULC文本行方向分类模型](docs/zh_CN/PULC/PULC_textline_orientation.md)
- [PULC语种分类模型](docs/zh_CN/PULC/PULC_language_classification.md)
- [模型训练](docs/zh_CN/PULC/PULC_train.md)
- [服务化部署](docs/zh_CN/deployment/PP-ShiTu/paddle_serving.md)
- [端侧部署](docs/zh_CN/deployment/PP-ShiTu/paddle_lite.md)
- [库管理工具](docs/zh_CN/deployment/PP-ShiTu/gallery_manager.md)
- [PULC超轻量图像分类实用方案](docs/zh_CN/training/PULC.md)
- [超轻量图像分类快速体验](docs/zh_CN/quick_start/PULC.md)
- [超轻量图像分类模型库](docs/zh_CN/models/PULC/model_list.md)
- [PULC有人/无人分类模型](docs/zh_CN/models/PULC/PULC_person_exists.md)
- [PULC人体属性识别模型](docs/zh_CN/models/PULC/PULC_person_attribute.md)
- [PULC佩戴安全帽分类模型](docs/zh_CN/models/PULC/PULC_safety_helmet.md)
- [PULC交通标志分类模型](docs/zh_CN/models/PULC/PULC_traffic_sign.md)
- [PULC车辆属性识别模型](docs/zh_CN/models/PULC/PULC_vehicle_attribute.md)
- [PULC有车/无车分类模型](docs/zh_CN/models/PULC/PULC_car_exists.md)
- [PULC含文字图像方向分类模型](docs/zh_CN/models/PULC/PULC_text_image_orientation.md)
- [PULC文本行方向分类模型](docs/zh_CN/models/PULC/PULC_textline_orientation.md)
- [PULC语种分类模型](docs/zh_CN/models/PULC/PULC_language_classification.md)
- [模型训练](docs/zh_CN/training/PULC.md)
- 推理部署
- [基于python预测引擎推理](docs/zh_CN/inference_deployment/python_deploy.md#1)
- [基于C++预测引擎推理](docs/zh_CN/inference_deployment/cpp_deploy.md)
- [服务化部署](docs/zh_CN/inference_deployment/classification_serving_deploy.md)
- [端侧部署](docs/zh_CN/inference_deployment/paddle_lite_deploy.md)
- [Paddle2ONNX模型转化与预测](deploy/paddle2onnx/readme.md)
- [基于python预测引擎推理](docs/zh_CN/deployment/image_classification/python.md#1)
- [基于C++预测引擎推理](docs/zh_CN/deployment/image_classification/cpp/linux.md)
- [服务化部署](docs/zh_CN/deployment/image_classification/paddle_serving.md)
- [端侧部署](docs/zh_CN/deployment/image_classification/paddle_lite.md)
- [Paddle2ONNX模型转化与预测](docs/zh_CN/deployment/image_classification/paddle2onnx.md)
- [模型压缩](deploy/slim/README.md)
- PP系列骨干网络模型
- [PP-HGNet](docs/zh_CN/models/PP-HGNet.md)
- [PP-LCNetv2](docs/zh_CN/models/PP-LCNetV2.md)
- [PP-LCNet](docs/zh_CN/models/PP-LCNet.md)
- [SSLD半监督知识蒸馏方案](docs/zh_CN/advanced_tutorials/ssld.md)
- [PP-HGNet](docs/zh_CN/models/ImageNet1k/PP-HGNet.md)
- [PP-LCNetv2](docs/zh_CN/models/ImageNet1k/PP-LCNetV2.md)
- [PP-LCNet](docs/zh_CN/models/ImageNet1k/PP-LCNet.md)
- [SSLD半监督知识蒸馏方案](docs/zh_CN/training/advanced/ssld.md)
- 前沿算法
- [骨干网络和预训练模型库](docs/zh_CN/algorithm_introduction/ImageNet_models.md)
- [骨干网络和预训练模型库](docs/zh_CN/models/ImageNet1k/model_list.md)
- [度量学习](docs/zh_CN/algorithm_introduction/metric_learning.md)
- [ReID](./docs/zh_CN/algorithm_introduction/reid.md)
- [模型压缩](docs/zh_CN/algorithm_introduction/model_prune_quantization.md)
- [ReID](./docs/zh_CN/algorithm_introduction/ReID.md)
- [模型压缩](docs/zh_CN/algorithm_introduction/prune_quantization.md)
- [模型蒸馏](docs/zh_CN/algorithm_introduction/knowledge_distillation.md)
- [数据增强](docs/zh_CN/advanced_tutorials/DataAugmentation.md)
- [数据增强](docs/zh_CN/training/config_discription/data_augmentation.md)
- [产业实用范例库](docs/zh_CN/samples)
- [30分钟快速体验图像分类](docs/zh_CN/quick_start/quick_start_classification_new_user.md)
- FAQ
- [图像识别精选问题](docs/zh_CN/faq_series/faq_2021_s2.md)
- [图像分类精选问题](docs/zh_CN/faq_series/faq_selected_30.md)
- [图像分类FAQ第一季](docs/zh_CN/faq_series/faq_2020_s1.md)
- [图像分类FAQ第二季](docs/zh_CN/faq_series/faq_2021_s1.md)
- [图像分类FAQ第三季](docs/zh_CN/faq_series/faq_2022_s1.md)
- [社区贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md)
- [图像识别精选问题](docs/zh_CN/FAQ/faq_2021_s2.md)
- [图像分类精选问题](docs/zh_CN/FAQ/faq_selected_30.md)
- [图像分类FAQ第一季](docs/zh_CN/FAQ/faq_2020_s1.md)
- [图像分类FAQ第二季](docs/zh_CN/FAQ/faq_2021_s1.md)
- [图像分类FAQ第三季](docs/zh_CN/FAQ/faq_2022_s1.md)
- [社区贡献指南](docs/zh_CN/community/how_to_contribute.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)
......@@ -147,7 +143,7 @@ PP-ShiTuV2 Android Demo APP,可扫描如下二维码,下载体验
</div>
PP-ShiTuV2是一个实用的轻量级通用图像识别系统,主要由主体检测、特征学习和向量检索三个模块组成。该系统从骨干网络选择和调整、损失函数的选择、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型裁剪量化多个方面,采用多种策略,对各个模块的模型进行优化,PP-ShiTuV2相比V1,Recall1提升近8个点。更多细节请参考[PP-ShiTuV2详细介绍](./docs/zh_CN/PPShiTu/PPShiTuV2_introduction.md)
PP-ShiTuV2是一个实用的轻量级通用图像识别系统,主要由主体检测、特征学习和向量检索三个模块组成。该系统从骨干网络选择和调整、损失函数的选择、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型裁剪量化多个方面,采用多种策略,对各个模块的模型进行优化,PP-ShiTuV2相比V1,Recall1提升近8个点。更多细节请参考[PP-ShiTuV2详细介绍](docs/zh_CN/models/PP-ShiTu/README.md)
<a name="识别效果展示"></a>
......@@ -216,7 +212,7 @@ PaddleClas提供了覆盖人、车、OCR场景九大常见任务的分类模型
<a name="贡献代码"></a>
## 贡献代码
我们非常欢迎你为PaddleClas贡献代码,也十分感谢你的反馈。
如果想为PaddleCLas贡献代码,可以参考[贡献指南](./docs/zh_CN/advanced_tutorials/how_to_contribute.md)
如果想为PaddleCLas贡献代码,可以参考[贡献指南](docs/zh_CN/community/how_to_contribute.md)
- 非常感谢[nblib](https://github.com/nblib)修正了PaddleClas中RandErasing的数据增广配置文件。
- 非常感谢[chenpy228](https://github.com/chenpy228)修正了PaddleClas文档中的部分错别字。
......
......@@ -68,18 +68,18 @@ Quick experience of **P**ractical **U**ltra **L**ight-weight image **C**lassific
- [Install PaddleClas Environment](./docs/en/installation/install_paddleclas_en.md)
- [PP-ShiTuV2 Image Recognition Systems Introduction](./docs/en/PPShiTu/PPShiTuV2_introduction.md)
- [Image Recognition Quick Start](docs/en/quick_start/quick_start_recognition_en.md)
- [20+ application scenarios](docs/zh_CN/introduction/ppshitu_application_scenarios.md)
- [20+ application scenarios](docs/zh_CN/deployment/PP-ShiTu/application_scenarios.md)
- Submodule Introduction and Model Training
- [Mainbody Detection](./docs/zh_CN/image_recognition_pipeline/mainbody_detection.md)
- [Mainbody Detection](docs/zh_CN/training/PP-ShiTu/mainbody_detection.md)
- [Feature Extraction](./docs/en/image_recognition_pipeline/feature_extraction_en.md)
- [Vector Search](./docs/en/image_recognition_pipeline/vector_search_en.md)
- [Hash Encoding](./docs/zh_CN/image_recognition_pipeline/deep_hashing.md)
- [Hash Encoding](docs/zh_CN/training/PP-ShiTu/deep_hashing.md)
- PipeLine Inference and Deployment
- [Python Inference](docs/en/inference_deployment/python_deploy_en.md)
- [C++ Inference](deploy/cpp_shitu/readme_en.md)
- [Serving Deployment](docs/en/inference_deployment/recognition_serving_deploy_en.md)
- [Lite Deployment](docs/en/inference_deployment/paddle_lite_deploy_en.md)
- [Shitu Gallery Manager Tool](docs/zh_CN/inference_deployment/shitu_gallery_manager.md)
- [Shitu Gallery Manager Tool](docs/zh_CN/deployment/PP-ShiTu/gallery_manager.md)
- [Practical Ultra Light-weight image Classification solutions](./docs/en/PULC/PULC_train_en.md)
- [PULC Quick Start](docs/en/PULC/PULC_quickstart_en.md)
- [PULC Model Zoo](docs/en/PULC/PULC_model_list_en.md)
......
../../docs/zh_CN/deployment/PP-ShiTu/cpp.md
\ No newline at end of file
......@@ -38,7 +38,7 @@ The following table lists the relevant metric obtained by PP-ShiTuV2 with compar
| :--------- | :------------------------------------------------ | :------- |
| | | recall@1 |
| PP-ShiTuV1 | 64(30+34)MB | 66.8% |
| PP-ShiTuV2 | 49(30+19) | 73.8% |
| PP-ShiTuV2 | 49(30+19)MB | 73.8% |
**Note:**
- For the introduction of recall and mAP metric, please refer to [Retrieval Metric](../algorithm_introduction/reid.md).
......
......@@ -176,14 +176,14 @@ Model training mainly includes the starting training and restoring training from
**Notice:**
The online evaluation method is used by default in the configuration file. If you want to speed up the training, you can turn off the online evaluation function, just add `-o Global.eval_during_train=False` after the above scripts.
After training, the final model files `latest.pdparams`, `best_model.pdarams` and the training log file `train.log` will be generated in the output directory. Among them, `best_model` saves the best model under the current evaluation index, and `latest` is used to save the latest generated model, which is convenient to resume training from the checkpoint when training task is interrupted. Training can be resumed from a checkpoint by adding `-o Global.checkpoint="path_to_resume_checkpoint"` to the end of the above training scripts, as shown below.
After training, the final model files `latest.pdparams`, `best_model.pdarams` and the training log file `train.log` will be generated in the output directory. Among them, `best_model` saves the best model under the current evaluation index, and `latest` is used to save the latest generated model, which is convenient to resume training from the checkpoint when training task is interrupted. Training can be resumed from a checkpoint by adding `-o Global.checkpoints="path_to_resume_checkpoint"` to the end of the above training scripts, as shown below.
- Single machine and single card checkpoint recovery training
```shell
export CUDA_VISIBLE_DEVICES=0
python3.7 tools/train.py \
-c ./ppcls/configs/GeneralRecognitionV2/GeneralRecognitionV2_PPLCNetV2_base.yaml \
-o Global.checkpoint="output/RecModel/latest"
-o Global.checkpoints="output/RecModel/latest"
```
- Single-machine multi-card checkpoint recovery training
```shell
......@@ -191,7 +191,7 @@ After training, the final model files `latest.pdparams`, `best_model.pdarams` an
python3.7 -m paddle.distributed.launch --gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/GeneralRecognitionV2/GeneralRecognitionV2_PPLCNetV2_base.yaml \
-o Global.checkpoint="output/RecModel/latest"
-o Global.checkpoints="output/RecModel/latest"
```
<a name="5.3"></a>
......
......@@ -33,7 +33,7 @@ ResNet_va 至 vd 的结构如下图所示,ResNet 最早提出时为 va 结构
**A**:
ResNet 系列模型中,相比于其他模型,ResNet_vd 模型在预测速度几乎不变的情况下,精度有非常明显的提升,因此推荐大家使用 ResNet_vd 系列模型。
[ResNet 及其 vd 系列模型文档](../models/ResNet_and_vd.md)中给出了 batch size=4 的情况下,在 T4 GPU 上,不同模型的的预测耗时、FLOPs、Params 与精度的变化曲线,可以根据自己自己的实际部署场景中的需求,去选择合适的模型,如果希望模型存储大小尽可能小或者预测速度尽可能快,则可以使用 ResNet18_vd 模型,如果希望获得尽可能高的精度,则建议使用 ResNet152_vd 或者 ResNet200_vd 模型。更多关于 ResNet 系列模型的介绍可以参考文档:[ResNet 及其 vd 系列模型文档](../models/ResNet_and_vd.md)
[ResNet 及其 vd 系列模型文档](../models/ImageNet1k/ResNet_and_vd.md)中给出了 batch size=4 的情况下,在 T4 GPU 上,不同模型的的预测耗时、FLOPs、Params 与精度的变化曲线,可以根据自己自己的实际部署场景中的需求,去选择合适的模型,如果希望模型存储大小尽可能小或者预测速度尽可能快,则可以使用 ResNet18_vd 模型,如果希望获得尽可能高的精度,则建议使用 ResNet152_vd 或者 ResNet200_vd 模型。更多关于 ResNet 系列模型的介绍可以参考文档:[ResNet 及其 vd 系列模型文档](../models/ImageNet1k/ResNet_and_vd.md)
* 精度-预测速度变化曲线
......@@ -55,7 +55,7 @@ ResNet 系列模型中,相比于其他模型,ResNet_vd 模型在预测速度
### Q1.7 大卷积核一定可以带来正向收益吗?
**A**: 不一定,将网络中的所有卷积核都增大未必会带来性能的提升,甚至会有有损性能,在论文 [MixConv: Mixed Depthwise Convolutional Kernels](https://arxiv.org/abs/1907.09595)
中指出,在一定范围内提升卷积核大小对精度的提升有正向作用,但是超出后会有损精度。所以考虑到模型的大小、计算量等问题,一般不选用大的卷积核去设计网络。同时,在 [PP-LCNet](../models/PP-LCNet.md) 文章中,也有关于大卷积核的实验。
中指出,在一定范围内提升卷积核大小对精度的提升有正向作用,但是超出后会有损精度。所以考虑到模型的大小、计算量等问题,一般不选用大的卷积核去设计网络。同时,在 [PP-LCNet](../models/ImageNet1k/PP-LCNet.md) 文章中,也有关于大卷积核的实验。
<a name="2"></a>
## 第 2 期
......@@ -88,7 +88,7 @@ ResNet 系列模型中,相比于其他模型,ResNet_vd 模型在预测速度
### Q2.5 PaddleClas 中提供了很多 ssld 模型,其应用的价值是?
**A**: PaddleClas 中提供了很多 ssld 预训练模型,其通过半监督知识蒸馏的方法获得了更好的预训练权重,在迁移任务或者下游视觉任务中,无须替换结构文件、只需要替换精度更高的 ssld 预训练模型即可提升精度,如在 PaddleSeg 中,[HRNet](https://github.com/PaddlePaddle/PaddleSeg/blob/release/v0.7.0/docs/model_zoo.md) 使用了 ssld 预训练模型的权重后,精度大幅度超越业界同样的模型的精度,在 PaddleDetection 中,[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.4/configs/ppyolo/README_cn.md) 使用了 ssld 预训练权重后,在较高的 baseline 上仍有进一步的提升。使用 ssld 预训练权重做分类的迁移表现也很抢眼,在 [SSLD 蒸馏策略](../advanced_tutorials/knowledge_distillation.md) 部分介绍了知识蒸馏对于分类任务迁移的收益。
**A**: PaddleClas 中提供了很多 ssld 预训练模型,其通过半监督知识蒸馏的方法获得了更好的预训练权重,在迁移任务或者下游视觉任务中,无须替换结构文件、只需要替换精度更高的 ssld 预训练模型即可提升精度,如在 PaddleSeg 中,[HRNet](https://github.com/PaddlePaddle/PaddleSeg/blob/release/v0.7.0/docs/model_zoo.md) 使用了 ssld 预训练模型的权重后,精度大幅度超越业界同样的模型的精度,在 PaddleDetection 中,[PP-YOLO](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.4/configs/ppyolo/README_cn.md) 使用了 ssld 预训练权重后,在较高的 baseline 上仍有进一步的提升。使用 ssld 预训练权重做分类的迁移表现也很抢眼,在 [SSLD 蒸馏策略](../training/advanced/knowledge_distillation.md) 部分介绍了知识蒸馏对于分类任务迁移的收益。
<a name="3"></a>
......@@ -96,13 +96,13 @@ ResNet 系列模型中,相比于其他模型,ResNet_vd 模型在预测速度
### Q3.1: DenseNet 模型相比于 ResNet 有什么改进呢?有哪些特点或者应用场景呢?
**A**: DenseNet 相比于 ResNet,设计了一个更激进的密集连接机制,通过考虑特征重用和旁路的设置,进一步减少了参数量,而且从一定程度上缓解了梯度弥散的问题,因为引入了更加密集的连接,因此模型更容易训练,而且具有一定的正则化效果。在数据量不是很多的图像分类场景中,DenseNet 是一个不错的选择。更多关于 DenseNet 的介绍与系列模型可以参考 [DenseNet 模型文档](../models/DPN_DenseNet.md)
**A**: DenseNet 相比于 ResNet,设计了一个更激进的密集连接机制,通过考虑特征重用和旁路的设置,进一步减少了参数量,而且从一定程度上缓解了梯度弥散的问题,因为引入了更加密集的连接,因此模型更容易训练,而且具有一定的正则化效果。在数据量不是很多的图像分类场景中,DenseNet 是一个不错的选择。更多关于 DenseNet 的介绍与系列模型可以参考 [DenseNet 模型文档](../models/ImageNet1k/DPN_DenseNet.md)
### Q3.2: DPN 网络相比于 DenseNet 有哪些改进呢?
**A**:DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPS 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。更多关于 DPN 的介绍与系列模型可以参考 [DPN 模型文档](../models/DPN_DenseNet.md)
**A**:DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 DenseNet 和 ResNeXt 结合的一个网络,其证明了 DenseNet 能从靠前的层级中提取到新的特征,而 ResNeXt 本质上是对之前层级中已提取特征的复用。作者进一步分析发现,ResNeXt 对特征有高复用率,但冗余度低,DenseNet 能创造新特征,但冗余度高。结合二者结构的优势,作者设计了 DPN 网络。最终 DPN 网络在同样 FLOPS 和参数量下,取得了比 ResNeXt 与 DenseNet 更好的结果。更多关于 DPN 的介绍与系列模型可以参考 [DPN 模型文档](../models/ImageNet1k/DPN_DenseNet.md)
### Q3.3: 怎么使用多个模型进行预测融合呢?
......@@ -276,7 +276,7 @@ Cosine_decay 和 piecewise_decay 的学习率变化曲线如下图所示,容
**A**:一般来说,数据集的规模对性能影响至关重要,但是图片的标注往往比较昂贵,所以有标注的图片数量往往比较稀少,在这种情况下,数据的增广尤为重要。在训练 ImageNet-1k 的标准数据增广中,主要使用了 Random_Crop 与 Random_Flip 两种数据增广方式,然而,近些年,越来越多的数据增广方式被提出,如 cutout、mixup、cutmix、AutoAugment 等。实验表明,这些数据的增广方式可以有效提升模型的精度。具体到数据集来说:
- ImageNet-1k:下表列出了 ResNet50 在 8 种不同的数据增广方式的表现,可以看出,相比 baseline,所有的数据增广方式均有收益,其中 cutmix 是目前最有效的数据增广。更多数据增广的介绍请参考[**数据增广章节**](../advanced_tutorials/DataAugmentation.md)
- ImageNet-1k:下表列出了 ResNet50 在 8 种不同的数据增广方式的表现,可以看出,相比 baseline,所有的数据增广方式均有收益,其中 cutmix 是目前最有效的数据增广。更多数据增广的介绍请参考[**数据增广章节**](../training/config_discription/data_augmentation.md)
| 模型 | 数据增广方式 | Test top-1 |
|:--:|:--:|:--:|
......@@ -314,7 +314,7 @@ Cosine_decay 和 piecewise_decay 的学习率变化曲线如下图所示,容
- 挖掘相关数据:用在现有数据集上训练饱和的模型去对相关的数据做预测,将置信度较高的数据打 label 后加入训练集进一步训练,如此循环操作,可进一步提升模型的精度。
- 知识蒸馏:可以先使用一个较大的模型在该数据集上训练一个精度较高的 teacher model,然后使用该 teacher model 去教导一个 Student model,其中,Student model 即为目标模型。PaddleClas 提供了百度自研的 SSLD 知识蒸馏方案,即使在 ImageNet-1k 这么有挑战的分类任务上,其也能稳定提升 3% 以上。SSLD 知识蒸馏的的章节请参考 [**SSLD 知识蒸馏**](../advanced_tutorials/knowledge_distillation.md)
- 知识蒸馏:可以先使用一个较大的模型在该数据集上训练一个精度较高的 teacher model,然后使用该 teacher model 去教导一个 Student model,其中,Student model 即为目标模型。PaddleClas 提供了百度自研的 SSLD 知识蒸馏方案,即使在 ImageNet-1k 这么有挑战的分类任务上,其也能稳定提升 3% 以上。SSLD 知识蒸馏的的章节请参考 [**SSLD 知识蒸馏**](../training/advanced/knowledge_distillation.md)
<a name="6"></a>
......
......@@ -71,7 +71,7 @@
### Q2.4: 移动端或嵌入式端上哪些网络具有优势?
建议使用移动端系列的网络,网络详情可以参考[移动端系列网络结构介绍](../models/Mobile.md)。如果任务的速度更重要,可以考虑 MobileNetV3 系列,如果模型大小更重要,可以根据移动端系列网络结构介绍中的 StorageSize-Accuracy 来确定具体的结构。
建议使用移动端系列的网络,网络详情可以参考[移动端系列网络结构介绍](../models/ImageNet1k/Mobile.md)。如果任务的速度更重要,可以考虑 MobileNetV3 系列,如果模型大小更重要,可以根据移动端系列网络结构介绍中的 StorageSize-Accuracy 来确定具体的结构。
### Q2.5: 既然移动端网络非常快,为什么还要使用诸如 ResNet 这样参数量和计算量较大的网络?
......
......@@ -72,7 +72,7 @@ w_t+1 = w_t - v_t+1
**A**:主体检测这块的输出数量是可以通过配置文件配置的。在配置文件中 Global.threshold 控制检测的阈值,小于该阈值的检测框被舍弃,Global.max_det_results 控制最大返回的结果数,这两个参数共同决定了输出检测框的数量。
#### Q1.4.2 训练主体检测模型的数据是如何选择的?换成更小的模型会有损精度吗?
**A**:训练数据是在 COCO、Object365、RPC、LogoDet 等公开数据集中随机抽取的子集。目前我们在 2.3 版本中推出了超轻量的主体检测模型,具体信息可以参考[主体检测](../image_recognition_pipeline/mainbody_detection.md#2-模型选择)。关于主体检测模型的更多信息请参考[主体检测](../image_recognition_pipeline/mainbody_detection.md)
**A**:训练数据是在 COCO、Object365、RPC、LogoDet 等公开数据集中随机抽取的子集。目前我们在 2.3 版本中推出了超轻量的主体检测模型,具体信息可以参考[主体检测](../training/PP-ShiTu/mainbody_detection.md#2-模型选择)。关于主体检测模型的更多信息请参考[主体检测](../training/PP-ShiTu/mainbody_detection.md)
#### Q1.4.3: 目前使用的主体检测模型检测在某些场景中会有误检?
**A**:目前的主体检测模型训练时使用了 COCO、Object365、RPC、LogoDet 等公开数据集,如果被检测数据是类似工业质检等于常见类别差异较大的数据,需要基于目前的检测模型重新微调训练。
......@@ -182,7 +182,7 @@ PaddlePaddle is installed successfully! Let's start deep learning with PaddlePad
**A**:如果使用的是 release/2.2 分支,建议更新为 release/2.3 分支,在 release/2.3 分支中,我们使用 faiss 检索模块替换了 Möbius 检索模型,具体可以参考[向量检索教程](../../../deploy/vector_search/README.md)。如仍存在问题,可以在用户微信群中联系我们,也可以在 GitHub 提 issue。
#### Q2.4.2: 识别模型怎么在预训练模型的基础上进行微调训练?
**A**:识别模型的微调训练和分类模型的微调训练类似,识别模型可以加载商品的预训练模型,训练过程可以参考[识别模型训练](../../zh_CN/models_training/recognition.md),后续我们也会持续细化这块的文档。
**A**:识别模型的微调训练和分类模型的微调训练类似,识别模型可以加载商品的预训练模型,训练过程可以参考[识别模型训练](../training/metric_learning/training.md),后续我们也会持续细化这块的文档。
#### Q2.4.3: 训练 metric learning 时,每个 epoch 中,无法跑完所有 mini-batch,为什么?
**A**:在训练 metric learning 时,使用的 Sampler 是 DistributedRandomIdentitySampler,该 Sampler 不会采样全部的图片,导致会让每一个 epoch 采样的数据不是所有的数据,所以无法跑完显示的 mini-batch 是正常现象。该问题在 release/2.3 分支已经优化,请更新到 release/2.3 使用。
......
......@@ -32,7 +32,7 @@
>>
* Q: 怎样根据自己的任务选择合适的模型进行训练?
* A: 如果希望在服务器部署,或者希望精度尽可能地高,对模型存储大小或者预测速度的要求不是很高,那么推荐使用 ResNet_vd、Res2Net_vd、DenseNet、Xception 等适合于服务器端的系列模型;如果希望在移动端侧部署,则推荐使用 MobileNetV3、GhostNet
等适合于移动端的系列模型。同时,我们推荐在选择模型的时候可以参考[模型库](../algorithm_introduction/ImageNet_models.md)中的速度-精度指标图。
等适合于移动端的系列模型。同时,我们推荐在选择模型的时候可以参考[模型库](../models/ImageNet1k/model_list.md)中的速度-精度指标图。
>>
* Q: 如何进行参数初始化,什么样的初始化可以加快模型收敛?
......@@ -126,7 +126,7 @@
>>
* Q: 数据量不足的情况下,目前有哪些常见的数据增广方法来增加训练样本的丰富度呢?
* A: PaddleClas 中将目前比较常见的数据增广方法分为了三大类,分别是图像变换类、图像裁剪类和图像混叠类,图像变换类主要包括 AutoAugment 和 RandAugment,图像裁剪类主要包括 CutOut、RandErasing、HideAndSeek 和 GridMask,图像混叠类主要包括 Mixup 和 Cutmix,更详细的关于数据增广的介绍可以参考:[数据增广章节](../algorithm_introduction/DataAugmentation.md)
* A: PaddleClas 中将目前比较常见的数据增广方法分为了三大类,分别是图像变换类、图像裁剪类和图像混叠类,图像变换类主要包括 AutoAugment 和 RandAugment,图像裁剪类主要包括 CutOut、RandErasing、HideAndSeek 和 GridMask,图像混叠类主要包括 Mixup 和 Cutmix,更详细的关于数据增广的介绍可以参考:[数据增广章节](../algorithm_introduction/data_augmentation.md)
>>
* Q: 对于遮挡情况比较常见的图像分类场景,该使用什么数据增广方法去提升模型的精度呢?
* A: 在训练的过程中可以尝试对训练集使用 CutOut、RandErasing、HideAndSeek 和 GridMask 等裁剪类数据增广方法,让模型也能够不止学习到显著区域,也能关注到非显著性区域,从而在遮挡的情况下,也能较好地完成识别任务。
......@@ -214,7 +214,7 @@
>>
* Q: 怎么在 windows 上或者 cpu 上面模型训练呢?
* A: 可以参考[开始使用教程](../models_training/classification.md),详细介绍了在 Linux、Windows、CPU 等环境中进行模型训练、评估与预测的教程。
* A: 可以参考[开始使用教程](../training/single_label_classification/training.md),详细介绍了在 Linux、Windows、CPU 等环境中进行模型训练、评估与预测的教程。
>>
* Q: 怎样在模型训练的时候使用 label smoothing 呢?
* A: 可以在配置文件中的 `Loss` 字段下进行设置,如下所示,`epsilon=0.1` 表示设置该值为 0.1,若不设置 `epsilon` 字段,则不使用 `label smoothing`
......
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
#SOURCEDIR = source
BUILDDIR = build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
# 识别模型转分类模型
PaddleClas 提供了 `gallery2fc.py` 工具,帮助大家将识别模型转为分类模型。目前该工具仅支持转换量化后模型,因此建议使用 PaddleClas 提供的 `general_PPLCNet_x2_5_pretrained_v1.0_quant` 预训练模型,该模型为量化后的通用识别模型,backbone 为 PPLCNet_x2_5。
如需使用其他模型,关于量化的具体操作请参考文档 [模型量化](./model_prune_quantization.md)
## 一、模型转换说明
### 1.1 准备底库数据、预训练模型
#### 1. 底库数据集
首先需要准备好底库数据,下面以 PaddleClas 提供的饮料数据集(drink_dataset_v1.0)为例进行说明,饮料数据集获取方法:
```shell
cd PaddleClas/
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
tar -xf drink_dataset_v1.0.tar
```
饮料数据集的底库图片路径为 `drink_dataset_v1.0/gallery/`,底库图片列表可在 `drink_dataset_v1.0/gallery/drink_label.txt` 中查看,关于底库数据格式说明,请参考文档[数据集格式说明](../data_preparation/recognition_dataset.md#1-数据集格式说明)
#### 2. 预训练模型
在开始转换模型前,需要准备好预训练模型,下面以量化后的 `general_PPLCNet_x2_5` 模型为例,下载预训练模型:
```shell
cd PaddleClas/pretrained/
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/general_PPLCNet_x2_5_pretrained_v1.0_quant.pdparams
```
### 1.2 准备配置文件
在进行模型转换时,需要通过配置文件定义所需参数,本例中所用配置文件为 `ppcls/configs/GeneralRecognition/Gallery2FC_PPLCNet_x2_5.yaml`,对于配置文件字段的说明,如下所示:
* Global:
* pretrained_model: 预训练模型路径,无需包含 `.pdparams` 后缀名;
* image_shape: 模型输入数据尺寸,无需包含 batch size 维度;
* save_inference_dir: 转换后模型的保存路径;
* Arch: 模型结构相关定义,可参考 [配置说明](../models_training/config_description.md#3-%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)
* IndexProcess: 底库数据集相关定义
* image_root: 底库数据集路径;
* data_file: 底库数据集列表文件路径;
### 1.3 模型转换
在完成上述准备工作后,即可进行模型转换,命令如下所示:
```python
python ppcls/utils/gallery2fc.py -c ppcls/configs/GeneralRecognition/Gallery2FC_PPLCNet_x2_5.yaml
```
在上述命令执行完成后,转换并导出的模型保存在目录 `./inference/general_PPLCNet_x2_5_quant/` 下。在推理部署时,需要注意的是,模型的输出结果通常有多个,应选取分类结果作为模型输出,需要注意区分。
高级教程
================================
.. toctree::
:maxdepth: 2
DataAugmentation.md
knowledge_distillation.md
model_prune_quantization.md
code_overview.md
how_to_contribute.md
......@@ -320,31 +320,31 @@
##### 4.2.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。
#### 4.3 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/recognition_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../deployment/PP-ShiTu/paddle_serving.md)来完成相应的部署工作。
#### 4.4 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
#### 4.5 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
### 5. 总结
#### 5.1 方法总结与对比
上述算法能快速地迁移至多数的ReID模型中(参考 [PP-ShiTuV2](../PPShiTu/PPShiTuV2_introduction.md) ),能进一步提升ReID模型的性能,
上述算法能快速地迁移至多数的ReID模型中(参考 [PP-ShiTuV2](../models/PP-ShiTu/README.md) ),能进一步提升ReID模型的性能,
#### 5.2 使用建议/FAQ
......
......@@ -240,7 +240,7 @@ Mixup 是最先提出的图像混叠增广方案,其原理简单、方便实
![][test_cutmix]
关于数据增强相关的实战部分实参考[数据增强实战](../advanced_tutorials/DataAugmentation.md)
关于数据增强相关的实战部分实参考[数据增强实战](../training/config_discription/data_augmentation.md)
## 参考文献
......
......@@ -55,7 +55,7 @@ LCDSH是一种局部约束深度监督哈希算法。该方案通过学习图像
`DSHSD`: ppcls/configs/DeepHash/DSHSD.yaml
`LCDSH`: ppcls/configs/DeepHash/LCDSH.yaml
具体训练方法,请参考[分类模型训练文档](../models_training/classification.md)
具体训练方法,请参考[分类模型训练文档](../training/single_label_classification/training.md)
<a name='4'></a>
## 4. 总结及建议
......
......@@ -46,12 +46,12 @@ CIFAR-10 数据集由 10 个类的 60000 个彩色图像组成,图像分辨率
<a name="2.2"></a>
### 2.2 模型准备
在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas 提供了 36 个系列共 175 个 ImageNet 预训练模型。具体的精度、速度等指标请参考[骨干网络和预训练模型库](./ImageNet_models.md)
在数据确定后,模型往往决定了最终算法精度的上限,在图像分类领域,经典的模型层出不穷,PaddleClas 提供了 36 个系列共 175 个 ImageNet 预训练模型。具体的精度、速度等指标请参考[骨干网络和预训练模型库](../models/ImageNet1k/model_list.md)
<a name="2.3"></a>
### 2.3 模型训练
在准备好数据、模型后,便可以开始迭代模型并更新模型的参数。经过多次迭代最终可以得到训练好的模型来做图像分类任务。图像分类的训练过程需要很多经验,涉及很多超参数的设置,PaddleClas 提供了一些列的[训练调优方法](../models_training/train_strategy.md),可以快速助你获得高精度的模型。
在准备好数据、模型后,便可以开始迭代模型并更新模型的参数。经过多次迭代最终可以得到训练好的模型来做图像分类任务。图像分类的训练过程需要很多经验,涉及很多超参数的设置,PaddleClas 提供了一些列的[训练调优方法](../training/single_label_classification/training_strategy.md),可以快速助你获得高精度的模型。
<a name="2.4"></a>
### 2.4 模型评估
......
算法介绍
================================
.. toctree::
:maxdepth: 2
image_classification.md
metric_learning.md
knowledge_distillation.md
model_prune_quantization.md
ImageNet_models.md
DataAugmentation.md
......@@ -29,6 +29,3 @@
- 产业应用十问十答
- 智能零售下的应用案例
- 识别系统快速落地方案
# Configuration file for the Sphinx documentation builder.
#
# This file only contains a selection of the most common options. For a full
# list see the documentation:
# https://www.sphinx-doc.org/en/master/usage/configuration.html
# -- Path setup --------------------------------------------------------------
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#
# import os
# import sys
# sys.path.insert(0, os.path.abspath('.'))
import sphinx_rtd_theme
from recommonmark.parser import CommonMarkParser
#import sphinx-markdown-tables
# -- Project information -----------------------------------------------------
project = 'PaddleClas'
copyright = '2021, PaddleClas'
author = 'PaddleClas'
# The full version, including alpha/beta/rc tags
release = '2.3.0'
# -- General configuration ---------------------------------------------------
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
source_parsers = {
'.md': CommonMarkParser,
}
source_suffix = ['.rst', '.md']
extensions = [
'recommonmark',
'sphinx_markdown_tables'
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = 'zh_CN'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This pattern also affects html_static_path and html_extra_path.
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# -- Options for HTML output -------------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = "sphinx_rtd_theme"
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
数据准备
================================
.. toctree::
:maxdepth: 2
recognition_dataset.md
classification_dataset.md
......@@ -58,7 +58,7 @@ PP-ShiTu对原数据集进行了`Gallery`库和`Query`库划分,并生成了
<a name="2.1 环境配置"></a>
### 2.1 环境配置
- 安装:请先参考文档[环境准备](../installation/install_paddleclas.md)配置PaddleClas运行环境
- 安装:请先参考文档[环境准备](../../installation.md)配置PaddleClas运行环境
- 进入`deploy`运行目录,本部分所有内容与命令均需要在`deploy`目录下运行,可以通过下面命令进入`deploy`目录。
```shell
cd deploy
......@@ -176,7 +176,7 @@ python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.u
其中`bbox`表示检测出的主体所在位置,`rec_docs`表示索引库中与检测框最为相似的类别,`rec_scores`表示对应的置信度。
检测的可视化结果也保存在`output`文件夹下,对于本张图像,识别结果可视化如下所示。
![](../../images/ppshitu_application_scenarios/systerm_result.jpg)
![](../../../images/ppshitu_application_scenarios/systerm_result.jpg)
<a name="2.4.2 基于文件夹的批量识别"></a>
......
......@@ -361,6 +361,6 @@ cd ..
## 4. 使用自己模型
使用自己训练的模型,可以参考[模型导出](../../docs/zh_CN/inference_deployment/export_model.md),导出`inference model`,用于模型预测。
使用自己训练的模型,可以参考[模型导出](../export_model.md),导出`inference model`,用于模型预测。
同时注意修改`yaml`文件中具体参数。
......@@ -130,7 +130,7 @@ pip install psutil
### 2.2 模型及数据准备
请按照[PP-ShiTu快速体验](../quick_start/quick_start_recognition.md#2.2.1)中下载及准备inference model,并修改好`${PaddleClas}/deploy/configs/inference_drink.yaml`的相关参数,同时准备好数据集。在具体使用时,请替换好自己的数据集及模型文件。
请按照[PP-ShiTu快速体验](../../quick_start/quick_start_recognition.md#2.2.1)中下载及准备inference model,并修改好`${PaddleClas}/deploy/configs/inference_drink.yaml`的相关参数,同时准备好数据集。在具体使用时,请替换好自己的数据集及模型文件。
```shell
cd ${PaddleClas}/deploy/shitu_index_manager
......
简体中文 | [English](../../en/inference_deployment/recognition_serving_deploy_en.md)
简体中文 | [English](../../../en/inference_deployment/recognition_serving_deploy_en.md)
# 识别模型服务化部署
......@@ -188,7 +188,7 @@ python3.7 -m pip install paddle-serving-server-gpu==0.7.0.post112 # GPU with CUD
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
recognition_web_service.py # 启动pipeline服务端的脚本
readme.md # 识别模型服务化部署文档
paddle2onnx.md # 识别模型服务化部署文档
run_cpp_serving.sh # 启动C++ Pipeline Serving部署的脚本
test_cpp_serving_client.py # rpc方式发送C++ Pipeline serving预测请求的脚本
```
......@@ -225,7 +225,7 @@ python3.7 -m pip install paddle-serving-server-gpu==0.7.0.post112 # GPU with CUD
# 一键编译安装Serving server、设置 SERVING_BIN
source ./build_server.sh python3.7
```
**注:** [build_server.sh](../build_server.sh#L55-L62) 所设定的路径可能需要根据实际机器上的环境如CUDA、python版本等作一定修改,然后再编译;如果执行 `build_server.sh` 过程中遇到非网络原因的报错,则可以手动将脚本中的命令逐条复制到终端执行。
**注:** [build_server.sh](../../../../deploy/paddleserving/build_server.sh#L55-L62) 所设定的路径可能需要根据实际机器上的环境如CUDA、python版本等作一定修改,然后再编译;如果执行 `build_server.sh` 过程中遇到非网络原因的报错,则可以手动将脚本中的命令逐条复制到终端执行。
- C++ Serving使用的输入输出格式与Python不同,因此需要执行以下命令,将4个文件复制到下的文件覆盖掉[3.1](#31-模型转换)得到文件夹中的对应4个prototxt文件。
```shell
......
# Python 预测推理
首先请参考文档[环境准备](../installation/install_paddleclas.md)配置运行环境。
首先请参考文档[环境准备](../../installation.md)配置运行环境。
## 目录
- [1. 图像分类模型推理](#1)
- [2. PP-ShiTu模型推理](#2)
- [2.1 主体检测模型推理](#2.1)
- [2.2 特征提取模型推理](#2.2)
- [2.3 PP-ShiTu PipeLine推理](#2.3)
- [1. PP-ShiTu模型推理](#1)
- [1.1 主体检测模型推理](#1.1)
- [1.2 特征提取模型推理](#1.2)
- [1.3 PP-ShiTu PipeLine推理](#1.3)
<a name="1"></a>
## 1. 图像分类推理
首先请参考文档[模型导出](./export_model.md)准备 inference 模型,然后进入 PaddleClas 的 `deploy` 目录下:
```shell
cd PaddleClas/deploy
```
使用以下命令进行预测:
```shell
python3.7 python/predict_cls.py -c configs/inference_cls.yaml
```
在配置文件 `configs/inference_cls.yaml` 中有以下字段用于配置预测参数:
* `Global.infer_imgs`:待预测的图片文件(夹)路径;
* `Global.inference_model_dir`:inference 模型文件所在文件夹的路径,该文件夹下需要有文件 `inference.pdmodel``inference.pdiparams` 两个文件;
* `Global.use_gpu`:是否使用 GPU 预测,默认为 `True`
* `Global.enable_mkldnn`:是否启用 `MKL-DNN` 加速库,默认为 `False`。注意 `enable_mkldnn``use_gpu` 同时为 `True` 时,将忽略 `enable_mkldnn`,而使用 GPU 预测;
* `Global.use_fp16`:是否启用 `FP16`,默认为 `False`
* `Global.use_tensorrt`:是否使用 TesorRT 预测引擎,默认为 `False`
* `PreProcess`:用于数据预处理配置;
* `PostProcess`:由于后处理配置;
* `PostProcess.Topk.class_id_map_file`:数据集 label 的映射文件,默认为 `../ppcls/utils/imagenet1k_label_list.txt`,该文件为 PaddleClas 所使用的 ImageNet 数据集 label 映射文件。
**注意**:
* 如果使用 VisionTransformer 系列模型,如 `DeiT_***_384`, `ViT_***_384` 等,请注意模型的输入数据尺寸,该类模型需要修改参数: `PreProcess.resize_short=384`, `PreProcess.resize=384`
* 如果你希望提升评测模型速度,使用 GPU 评测时,建议开启 TensorRT 加速预测,使用 CPU 评测时,建议开启 MKL-DNN 加速预测。
<a name="2"></a>
## 2. PP-ShiTu模型推理
## 1. PP-ShiTu模型推理
PP-ShiTu整个Pipeline包含三部分:主体检测、特征提取模型、特征检索。其中主体检测模型、特征提取模型可以单独推理使用。单独使用主体检测详见[主体检测模型推理](#2.1),特征提取模型单独推理详见[特征提取模型推理](#2.2), PP-ShiTu整体推理详见[PP-ShiTu PipeLine推理](#2.3)
<a name="2.1"></a>
### 2.1 主体检测模型推理
### 1.1 主体检测模型推理
进入 PaddleClas 的 `deploy` 目录下:
......@@ -78,7 +46,7 @@ python3.7 python/predict_det.py -c configs/inference_det.yaml
<a name="2.2"></a>
### 2.2 特征提取模型推理
### 1.2 特征提取模型推理
下面以商品图片的特征提取为例,介绍特征提取模型推理。首先进入 PaddleClas 的 `deploy` 目录下:
......@@ -103,12 +71,12 @@ python3.7 python/predict_rec.py -c configs/inference_rec.yaml
上述预测命令可以得到一个 512 维的特征向量,直接输出在在命令行中。
在配置文件 `configs/inference_det.yaml` 中有以下字段用于配置预测参数:
在配置文件 `configs/inference_rec.yaml` 中有以下字段用于配置预测参数:
* `Global.infer_imgs`:待预测的图片文件路径;
* `Global.use_gpu`: 是否使用 GPU 预测,默认为 `True`
<a name="2.3"></a>
<a name="1.3"></a>
### 2.3. PP-ShiTu PipeLine推理
### 1.3 PP-ShiTu PipeLine推理
主体检测、特征提取和向量检索的串联预测,可以参考[图像识别快速开始](../quick_start/quick_start_recognition.md)
主体检测、特征提取和向量检索的串联预测,可以参考[图像识别快速开始](../../quick_start/quick_start_recognition.md)
......@@ -11,7 +11,7 @@
- [2.2 识别模型调优](#2.2)
- [3.模型加速](#3)
[PP-ShiTu快速开始](../quick_start/quick_start_recognition.md)中,主要展示了`PP-ShiTu`的快速开始demo。那么本文档主要介绍,如何将`PP-ShiTu`应用到自己的需求中,及如何继续调优,优化识别效果。具体可以分成以下三种情况
[PP-ShiTu快速开始](../../quick_start/quick_start_recognition.md)中,主要展示了`PP-ShiTu`的快速开始demo。那么本文档主要介绍,如何将`PP-ShiTu`应用到自己的需求中,及如何继续调优,优化识别效果。具体可以分成以下三种情况
- 直接使用官方模型
- 根据需求对模型进行调优
......@@ -35,7 +35,7 @@
### 1.1 下载官方模型及数据准备
模型下载及pipline 运行详见[图像识别快速开始](../quick_start/quick_start_recognition.md)
模型下载及pipline 运行详见[图像识别快速开始](../../quick_start/quick_start_recognition.md)
下载模型后,要准备相应的数据,即所迁移应用的具体数据,数据量根据实际情况,自行决定,但是不能太少,会影响精度。将准备的数据分成两部分:1)建库图像(gallery),2)测试图像。其中建库数据无需过多,但需保证每个类别包含此类别物体不同角度的图像,建议每个类别至少5张图,请根据实际情况,具体调节。
......@@ -49,7 +49,7 @@
对于加入检索的数据,每个类别尽量准备此类别的各角度的图像,丰富类别信息。准备的图像只能包含此类别,同时图像背景尽可能的少、简单。即将要加入检索根据标注的包围框信息,裁剪出bbox图像作为新的要加入的图像,以提高检索库的图像质量。
收集好图像后,数据整理及建库流程详见[图像识别快速开始](../quick_start/quick_start_recognition.md)`3.2 建立新的索引库`
收集好图像后,数据整理及建库流程详见[图像识别快速开始](../../quick_start/quick_start_recognition.md)`3.2 建立新的索引库`
<a name="1.3"></a>
......@@ -77,12 +77,12 @@
在使用官方模型后,如果不满足精度需求,则可以参考此部分文档,进行模型调优
因为要对模型进行训练,所以收集自己的数据集。数据准备及相应格式请参考:[特征提取文档](../image_recognition_pipeline/feature_extraction.md)`4.1数据准备`部分、[识别数据集说明](../data_preparation/recognition_dataset.md)。值得注意的是,此部分需要准备大量的数据,以保证识别模型效果。训练配置文件参考:[通用识别模型配置文件](../../../ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml),训练方法参考:[识别模型训练](../models_training/recognition.md)
因为要对模型进行训练,所以收集自己的数据集。数据准备及相应格式请参考:[特征提取文档](../../training/PP-ShiTu/feature_extraction.md)`4.1数据准备`部分、[识别数据集说明](../../training/metric_learning/dataset.md)。值得注意的是,此部分需要准备大量的数据,以保证识别模型效果。训练配置文件参考:[通用识别模型配置文件](../../../../ppcls/configs/GeneralRecognition/GeneralRecognition_PPLCNet_x2_5.yaml),训练方法参考:[识别模型训练](../../training/metric_learning/training.md)
- 数据增强:根据实际情况选择不同数据增强方法。如:实际应用中数据遮挡比较严重,建议添加`RandomErasing`增强方法。详见[数据增强文档](./DataAugmentation.md)
- 换不同的`backbone`,一般来说,越大的模型,特征提取能力更强。不同`backbone`详见[模型介绍](../algorithm_introduction/ImageNet_models.md)
- 选择不同的`Metric Learning`方法。不同的`Metric Learning`方法,对不同的数据集效果可能不太一样,建议尝试其他`Loss`,详见[Metric Learning](../algorithm_introduction/metric_learning.md)
- 采用蒸馏方法,对小模型进行模型能力提升,详见[模型蒸馏](../algorithm_introduction/knowledge_distillation.md)
- 数据增强:根据实际情况选择不同数据增强方法。如:实际应用中数据遮挡比较严重,建议添加`RandomErasing`增强方法。详见[数据增强文档](../../training/config_discription/data_augmentation.md)
- 换不同的`backbone`,一般来说,越大的模型,特征提取能力更强。不同`backbone`详见[模型介绍](../../models/ImageNet1k/model_list.md)
- 选择不同的`Metric Learning`方法。不同的`Metric Learning`方法,对不同的数据集效果可能不太一样,建议尝试其他`Loss`,详见[Metric Learning](../../algorithm_introduction/metric_learning.md)
- 采用蒸馏方法,对小模型进行模型能力提升,详见[模型蒸馏](../../algorithm_introduction/knowledge_distillation.md)
- 增补数据集。针对错误样本,添加badcase数据
模型训练完成后,参照[1.2 检索库更新](#1.2)进行检索库更新。同时,对整个pipeline进行测试,如果精度不达预期,则重复此步骤。
......@@ -94,4 +94,4 @@
模型加速主要以下几种方法:
- 替换小模型:一般来说,越小的模型预测速度相对越快
- 模型裁剪、量化:请参考文档[模型压缩](./model_prune_quantization.md),压缩配置文件修改请参考[slim相关配置文件](../../../ppcls/configs/slim/)
- 模型裁剪、量化:请参考文档[模型压缩](../../training/advanced/prune_quantization.md),压缩配置文件修改请参考[slim相关配置文件](../../../../ppcls/configs/slim/)
......@@ -25,7 +25,7 @@
值得注意的是,为了更好是适配性,目前版本,`PaddleClas` 中暂时**只使用 CPU 进行向量检索**
![](../../images/structure.jpg)
![](../../../images/structure.jpg)
如上图中所示,向量检索部分,在整个 `PP-ShiTu` 系统中有两部分内容
......@@ -127,7 +127,7 @@ IndexProcess:
### 4.2 检索配置文件参数
将检索的过程融合到 `PP-ShiTu` 的整体流程中,请参考 [README](../../../README_ch.md)`PP-ShiTu 图像识别系统介绍` 部分。检索具体使用操作请参考[识别快速开始文档](../quick_start/quick_start_recognition.md)
将检索的过程融合到 `PP-ShiTu` 的整体流程中,请参考 [README](../../../../README_ch.md)`PP-ShiTu 图像识别系统介绍` 部分。检索具体使用操作请参考[识别快速开始文档](../../quick_start/quick_start_recognition.md)
其中,检索部分配置如下,整体检索配置文件,请参考 `deploy/configs/inference_*.yaml` 文件。
......@@ -145,4 +145,4 @@ IndexProcess:
- `return_k`: 检索结果返回 `k` 个结果
- `score_thres`: 检索匹配的阈值
- `hamming_radius`: 汉明距离半径。此参数只有在使用二值特征模型,`dist_type`设置为`hamming`时才能生效。具体二值特征模型使用方法请参考[哈希编码](./deep_hashing.md)
- `hamming_radius`: 汉明距离半径。此参数只有在使用二值特征模型,`dist_type`设置为`hamming`时才能生效。具体二值特征模型使用方法请参考[哈希编码](../../training/PP-ShiTu/deep_hashing.md)
......@@ -17,7 +17,7 @@ PaddlePaddle 支持导出 inference 模型用于部署推理场景,相比于
<a name="1"></a>
## 1. 环境准备
首先请参考文档文档[环境准备](../installation/install_paddleclas.md)配置运行环境。
首先请参考文档文档[环境准备](../installation.md)配置运行环境。
<a name="2"></a>
## 2. 分类模型导出
......@@ -46,7 +46,7 @@ python tools/export_model.py \
<a name="3"></a>
## 3. 主体检测模型导出
主体检测模型的导出,可以参考[主体检测介绍](../image_recognition_pipeline/mainbody_detection.md)
主体检测模型的导出,可以参考[主体检测介绍](../training/PP-ShiTu/mainbody_detection.md)
<a name="4"></a>
## 4. 识别模型导出
......@@ -91,9 +91,16 @@ python3 tools/export_model.py \
导出的 inference 模型文件可用于预测引擎进行推理部署,根据不同的部署方式/平台,可参考:
* [Python 预测](./inference/python_deploy.md)
* [C++ 预测](./inference/cpp_deploy.md)(目前仅支持分类模型)
* [Python Whl 预测](./inference/whl_deploy.md)(目前仅支持分类模型)
* [PaddleHub Serving 部署](./deployment/paddle_hub_serving_deploy.md)(目前仅支持分类模型)
* [PaddleServing 部署](./deployment/paddle_serving_deploy.md)
* [PaddleLite 部署](./deployment/paddle_lite_deploy.md)(目前仅支持分类模型)
图像分类模型部署:
* [Python 预测](./image_classification/python.md)
* [C++ 预测](./image_classification/cpp/linux.md)
* [Python Whl 预测](./image_classification/whl.md)(目前仅支持分类模型)
* [PaddleHub Serving 部署](./image_classification/paddle_hub.md)(目前仅支持分类模型)
* [PaddleServing 部署](./image_classification/paddle_serving.md)
* [PaddleLite 部署](./image_classification/paddle_lite.md)
PP-ShiTu 部署:
* [Python 预测](./PP-ShiTu/python.md)
* [C++ 预测](./PP-ShiTu/cpp.md)
* [PaddleServing 部署](./PP-ShiTu/paddle_serving.md)
* [PaddleLite 部署](./PP-ShiTu/paddle_lite.md)
......@@ -25,7 +25,7 @@
- Linux 环境,推荐使用 docker。
- Windows 环境,目前支持基于 `Visual Studio 2019 Community` 进行编译;此外,如果您希望通过生成 `sln 解决方案` 的方式进行编译,可以参考该文档:[https://zhuanlan.zhihu.com/p/145446681](https://zhuanlan.zhihu.com/p/145446681)
* 该文档主要介绍基于 Linux 环境下的 PaddleClas C++ 预测流程,如果需要在 Windows 环境下使用预测库进行 C++ 预测,具体编译方法请参考 [Windows 下编译教程](./cpp_deploy_on_windows.md)
* 该文档主要介绍基于 Linux 环境下的 PaddleClas C++ 预测流程,如果需要在 Windows 环境下使用预测库进行 C++ 预测,具体编译方法请参考 [Windows 下编译教程](windows.md)
<a name="1.1"></a>
### 1.1 编译 opencv 库
......@@ -255,7 +255,7 @@ make
<a name="3.1"></a>
### 3.1 准备 inference model
首先需要准备 inference model,关于将模型导出为 inference model 的具体步骤,可以参考 [模型导出](./export_model.md) 文档。假设导出的预测模型文件放在 `./inference` 目录下,则目录结构如下。
首先需要准备 inference model,关于将模型导出为 inference model 的具体步骤,可以参考 [模型导出](../../export_model.md) 文档。假设导出的预测模型文件放在 `./inference` 目录下,则目录结构如下。
```
inference/
......@@ -293,6 +293,6 @@ sh tools/run.sh
* 最终屏幕上会输出结果,如下图所示。
![](../../images/inference_deployment/cpp_infer_result.png)
![](../../../../images/inference_deployment/cpp_infer_result.png)
其中 `class id` 表示置信度最高的类别对应的 id,score 表示图片属于该类别的概率。
......@@ -61,19 +61,19 @@ paddle_inference_install_dir
1. 打开 Visual Studio 2019 Community,点击 `继续但无需代码`
![step2](../../images/inference_deployment/vs2019_step1.png)
![step2](../../../../images/inference_deployment/vs2019_step1.png)
2. 点击:`文件`->`打开`->`CMake`
![step2.1](../../images/inference_deployment/vs2019_step2.png)
![step2.1](../../../../images/inference_deployment/vs2019_step2.png)
选择项目代码所在路径,并打开 `CMakeList.txt`
![step2.2](../../images/inference_deployment/vs2019_step3.png)
![step2.2](../../../../images/inference_deployment/vs2019_step3.png)
3. 点击:`项目`->`CMake 设置`
![step3](../../images/inference_deployment/vs2019_step4.png)
![step3](../../../../images/inference_deployment/vs2019_step4.png)
4. 请设置以下参数的值
......@@ -102,13 +102,13 @@ paddle_inference_install_dir
* `PADDLE_LIB`:该路径下需要有 `CMakeCache.txt` 文件,一般为 `paddle_inference_install_dir/`
* 在使用 `CPU` 版预测库时,请不要勾选 `WITH_GPU` - `保存到 JSON`
![step4](../../images/inference_deployment/vs2019_step5.png)
![step4](../../../../images/inference_deployment/vs2019_step5.png)
设置完成后,点击上图中 `保存并生成 CMake 缓存以加载变量`
5. 点击`生成`->`全部生成`
![step6](../../images/inference_deployment/vs2019_step6.png)
![step6](../../../../images/inference_deployment/vs2019_step6.png)
在编译完成后,会生成可执行文件 `clas_system.exe`。并且,如未设置 `DCONFIG_LIB``DCLS_LIB`,则会在 `.\lib\` 目录下生成 `config lib` 和 `cls lib` 两个静态链接库文件(`libconfig.a`、`libcls.a`)。类似地,你也可以仅编译生成 `config lib` 和 `cls lib` 两个静态链接库文件,只需打开路径为 `D:\projects\PaddleClas\deploy\cpp\lib\CMakeList.txt` 的 `CMake` 文件并进行编译即可,具体参考[2. 使用 Visual Studio 2019 编译](#2),完成编译后,同样可在 `.\lib\` 目录下生成静态链接库文件,静态链接库文件可用于二次开发。
......@@ -118,7 +118,7 @@ paddle_inference_install_dir
<a name='3.1'></a>
### 3.1 准备 inference model
首先需要准备 inference model,关于将模型导出为 inference model 的具体步骤,可以参考 [模型导出](./export_model.md) 文档。假设导出的预测模型文件放在 `./inference` 目录下,则目录结构如下。
首先需要准备 inference model,关于将模型导出为 inference model 的具体步骤,可以参考 [模型导出](../../export_model.md) 文档。假设导出的预测模型文件放在 `./inference` 目录下,则目录结构如下。
```
inference/
......
# paddle2onnx 模型转化与预测
## 目录
- [paddle2onnx 模型转化与预测](#paddle2onnx-模型转化与预测)
- [1. 环境准备](#1-环境准备)
- [2. 模型转换](#2-模型转换)
- [3. onnx 预测](#3-onnx-预测)
## 1. 环境准备
需要准备 Paddle2ONNX 模型转化环境,和 ONNX 模型预测环境。
Paddle2ONNX 支持将 PaddlePaddle inference 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11。
更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX#paddle2onnx)
- 安装 Paddle2ONNX
```shell
python3.7 -m pip install paddle2onnx
```
- 安装 ONNX 推理引擎
```shell
python3.7 -m pip install onnxruntime
```
下面以 ResNet50_vd 为例,介绍如何将 PaddlePaddle inference 模型转换为 ONNX 模型,并基于 ONNX 引擎预测。
## 2. 模型转换
- ResNet50_vd inference模型下载
```shell
cd deploy
mkdir models && cd models
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
cd ..
```
- 模型转换
使用 Paddle2ONNX 将 Paddle 静态图模型转换为 ONNX 模型格式:
```shell
paddle2onnx --model_dir=./models/ResNet50_vd_infer/ \
--model_filename=inference.pdmodel \
--params_filename=inference.pdiparams \
--save_file=./models/ResNet50_vd_infer/inference.onnx \
--opset_version=10 \
--enable_onnx_checker=True
```
转换完毕后,生成的ONNX 模型 `inference.onnx` 会被保存在 `./models/ResNet50_vd_infer/` 路径下
## 3. onnx 预测
执行如下命令:
```shell
python3.7 python/predict_cls.py \
-c configs/inference_cls.yaml \
-o Global.use_onnx=True \
-o Global.use_gpu=False \
-o Global.inference_model_dir=./models/ResNet50_vd_infer
```
结果如下:
```
ILSVRC2012_val_00000010.jpeg: class id(s): [153, 204, 229, 332, 155], score(s): [0.69, 0.10, 0.02, 0.01, 0.01], label_name(s): ['Maltese dog, Maltese terrier, Maltese', 'Lhasa, Lhasa apso', 'Old English sheepdog, bobtail', 'Angora, Angora rabbit', 'Shih-Tzu']
```
简体中文 | [English](../../en/inference_deployment/paddle_hub_serving_deploy_en.md)
简体中文 | [English](../../../en/inference_deployment/paddle_hub_serving_deploy_en.md)
# 基于 PaddleHub Serving 的服务部署
......@@ -54,7 +54,7 @@ python3.7 -m pip install paddlehub==2.1.0 --upgrade -i https://pypi.tuna.tsinghu
"inference_model_dir": "../inference/"
```
* 模型文件(包括 `.pdmodel``.pdiparams`)的名称必须为 `inference`
* 我们提供了大量基于 ImageNet-1k 数据集的预训练模型,模型列表及下载地址详见[模型库概览](../algorithm_introduction/ImageNet_models.md),也可以使用自己训练转换好的模型。
* 我们提供了大量基于 ImageNet-1k 数据集的预训练模型,模型列表及下载地址详见[模型库概览](../../models/ImageNet1k/model_list.md),也可以使用自己训练转换好的模型。
<a name="4"></a>
......@@ -236,4 +236,4 @@ list: 返回结果
'class_id_map_file':
```
为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [PaddleClas/deploy/hubserving/test_hubserving.py#L41-L47](../../../deploy/hubserving/test_hubserving.py#L41-L47) 以及 [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](../../../deploy/hubserving/test_hubserving.py#L51-L76) 中修改数据预处理逻辑相关代码。
为了避免不必要的延时以及能够以 batch_size 进行预测,数据预处理逻辑(包括 `resize`、`crop` 等操作)均在客户端完成,因此需要在 [PaddleClas/deploy/hubserving/test_hubserving.py#L41-L47](../../../../deploy/hubserving/test_hubserving.py#L41-L47) 以及 [PaddleClas/deploy/hubserving/test_hubserving.py#L51-L76](../../../../deploy/hubserving/test_hubserving.py#L51-L76) 中修改数据预处理逻辑相关代码。
......@@ -2,7 +2,7 @@
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleClas分类模型的详细步骤。
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../docs/zh_CN/extension/paddle_mobile_inference.md)
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../models/ImageNet1k/paddle_lite_benchmark.md)
---
......
简体中文 | [English](../../en/inference_deployment/classification_serving_deploy_en.md)
简体中文 | [English](../../../en/inference_deployment/classification_serving_deploy_en.md)
# 分类模型服务化部署
......@@ -141,7 +141,7 @@ classification_web_service.py # 启动pipeline服务端的脚本
config.yml # 启动pipeline服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
readme.md # 分类模型服务化部署文档
paddle2onnx.md # 分类模型服务化部署文档
run_cpp_serving.sh # 启动C++ Serving部署的脚本
test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
```
......@@ -182,7 +182,7 @@ test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
# 一键编译安装Serving server、设置 SERVING_BIN
source ./build_server.sh python3.7
```
**注:**[build_server.sh](../../../deploy/paddleserving/build_server.sh#L55-L62)所设定的路径可能需要根据实际机器上的环境如CUDA、python版本等作一定修改,然后再编译;如果执行`build_server.sh`过程中遇到非网络原因的报错,则可以手动将脚本中的命令逐条复制到终端执行。
**注:**[build_server.sh](../../../../deploy/paddleserving/build_server.sh#L55-L62)所设定的路径可能需要根据实际机器上的环境如CUDA、python版本等作一定修改,然后再编译;如果执行`build_server.sh`过程中遇到非网络原因的报错,则可以手动将脚本中的命令逐条复制到终端执行。
- 修改客户端文件 `ResNet50_vd_client/serving_client_conf.prototxt` ,将 `feed_type:` 后的字段改为20,将第一个 `shape:` 后的字段改为1并删掉其余的 `shape` 字段。
```log
......@@ -194,9 +194,9 @@ test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
shape: 1
}
```
- 修改 [`test_cpp_serving_client`](../../../deploy/paddleserving/test_cpp_serving_client.py) 的部分代码
1. 修改 [`load_client_config`](../../../deploy/paddleserving/test_cpp_serving_client.py#L28) 处的代码,将 `load_client_config` 后的路径改为 `ResNet50_vd_client/serving_client_conf.prototxt`
2. 修改 [`feed={"inputs": image}`](../../../deploy/paddleserving/test_cpp_serving_client.py#L45) 处的代码,将 `inputs` 改为与 `ResNet50_vd_client/serving_client_conf.prototxt``feed_var` 字段下面的 `name` 一致。由于部分模型client文件中的 `name``x` 而不是 `inputs` ,因此使用这些模型进行C++ Serving部署时需要注意这一点。
- 修改 [`test_cpp_serving_client`](../../../../deploy/paddleserving/test_cpp_serving_client.py) 的部分代码
1. 修改 [`load_client_config`](../../../../deploy/paddleserving/test_cpp_serving_client.py#L28) 处的代码,将 `load_client_config` 后的路径改为 `ResNet50_vd_client/serving_client_conf.prototxt`
2. 修改 [`feed={"inputs": image}`](../../../../deploy/paddleserving/test_cpp_serving_client.py#L45) 处的代码,将 `inputs` 改为与 `ResNet50_vd_client/serving_client_conf.prototxt``feed_var` 字段下面的 `name` 一致。由于部分模型client文件中的 `name``x` 而不是 `inputs` ,因此使用这些模型进行C++ Serving部署时需要注意这一点。
- 启动服务:
```shell
......
# Python 预测推理
首先请参考文档[环境准备](../../installation.md)配置运行环境。
## 目录
- [1. 图像分类模型推理](#1)
<a name="1"></a>
## 1. 图像分类推理
首先请参考文档[模型导出](../export_model.md)准备 inference 模型,然后进入 PaddleClas 的 `deploy` 目录下:
```shell
cd PaddleClas/deploy
```
使用以下命令进行预测:
```shell
python3.7 python/predict_cls.py -c configs/inference_cls.yaml
```
在配置文件 `configs/inference_cls.yaml` 中有以下字段用于配置预测参数:
* `Global.infer_imgs`:待预测的图片文件(夹)路径;
* `Global.inference_model_dir`:inference 模型文件所在文件夹的路径,该文件夹下需要有文件 `inference.pdmodel``inference.pdiparams` 两个文件;
* `Global.use_gpu`:是否使用 GPU 预测,默认为 `True`
* `Global.enable_mkldnn`:是否启用 `MKL-DNN` 加速库,默认为 `False`。注意 `enable_mkldnn``use_gpu` 同时为 `True` 时,将忽略 `enable_mkldnn`,而使用 GPU 预测;
* `Global.use_fp16`:是否启用 `FP16`,默认为 `False`
* `Global.use_tensorrt`:是否使用 TesorRT 预测引擎,默认为 `False`
* `PreProcess`:用于数据预处理配置;
* `PostProcess`:由于后处理配置;
* `PostProcess.Topk.class_id_map_file`:数据集 label 的映射文件,默认为 `../ppcls/utils/imagenet1k_label_list.txt`,该文件为 PaddleClas 所使用的 ImageNet 数据集 label 映射文件。
**注意**:
* 如果使用 VisionTransformer 系列模型,如 `DeiT_***_384`, `ViT_***_384` 等,请注意模型的输入数据尺寸,该类模型需要修改参数: `PreProcess.resize_short=384`, `PreProcess.resize=384`
* 如果你希望提升评测模型速度,使用 GPU 评测时,建议开启 TensorRT 加速预测,使用 CPU 评测时,建议开启 MKL-DNN 加速预测。
......@@ -39,14 +39,14 @@ python3 setup.py install
## 2. 快速开始
* 使用 `ResNet50` 模型,以下图(`PaddleClas/docs/images/inference_deployment/whl_demo.jpg`)为例进行说明。
![](../../images/inference_deployment/whl_demo.jpg)
![](../../../images/inference_deployment/whl_demo.jpg)
* 在 Python 代码中使用
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
infer_imgs='docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
......@@ -91,7 +91,7 @@ Predict complete!
* 命令行中
```bash
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --resize_short=384 --crop_size=384
paddleclas --model_name=ViT_base_patch16_384 --infer_imgs='docs/images/deployment/whl_demo.jpg' --resize_short=384 --crop_size=384
```
* Python 代码中
......@@ -123,14 +123,14 @@ paddleclas -h
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
infer_imgs = 'docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/deployment/whl_demo.jpg'
```
<a name="4.3"></a>
......@@ -141,14 +141,14 @@ paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deploymen
```python
from paddleclas import PaddleClas
clas = PaddleClas(inference_model_dir='./inference/')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
infer_imgs = 'docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
paddleclas --inference_model_dir='./inference/' --infer_imgs='docs/images/deployment/whl_demo.jpg'
```
<a name="4.4"></a>
......@@ -197,7 +197,7 @@ paddleclas --model_name='ResNet50' --infer_imgs='https://raw.githubusercontent.c
import cv2
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = cv2.imread("docs/images/inference_deployment/whl_demo.jpg")[:, :, ::-1]
infer_imgs = cv2.imread("docs/images/deployment/whl_demo.jpg")[:, :, ::-1]
result=clas.predict(infer_imgs)
print(next(result))
```
......@@ -243,12 +243,12 @@ class_id<space>class_name<\n>
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50', class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
infer_imgs = 'docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
* CLI
```bash
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/inference_deployment/whl_demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'
paddleclas --model_name='ResNet50' --infer_imgs='docs/images/deployment/whl_demo.jpg' --class_id_map_file='./ppcls/utils/imagenet1k_label_list.txt'
```
FAQ系列
================================
.. toctree::
:maxdepth: 2
faq_2021_s2.md
faq_2021_s1.md
faq_2020_s1.md
faq_selected_30.md
图像识别流程
================================
.. toctree::
:maxdepth: 2
mainbody_detection.md
feature_extraction.md
vector_search.md
欢迎使用PaddleClas图像分类库!
================================
.. toctree::
:maxdepth: 1
introduction/index
installation/index
quick_start/index
image_recognition_pipeline/index
data_preparation/index
models_training/index
inference_deployment/index
models/index
algorithm_introduction/index
advanced_tutorials/index
others/index
faq_series/index
推理部署
================================
.. toctree::
:maxdepth: 2
export_model.md
python_deploy.md
cpp_deploy.md
paddle_serving_deploy.md
paddle_hub_serving_deploy.md
paddle_lite_deploy.md
whl_deploy.md
cpp_deploy_on_windows.md
安装
================================
.. toctree::
:maxdepth: 2
install_paddle.md
install_paddleclas.md
## PaddleClas 功能特性
飞桨图像识别套件 PaddleClas 是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。具体地,它包含以下几个核心特性。
- 实用的图像识别系统:集成了目标检测、特征学习、图像检索等模块,广泛适用于各类图像识别任务。
提供商品识别、车辆识别、 logo 识别和动漫人物识别等 4 个场景应用示例。
- 丰富的预训练模型库:提供了 36 个系列共 175 个 ImageNet 预训练模型,其中 7 个精选系列模型支持结构快速修改。
- 全面易用的特征学习组件:集成 arcmargin, triplet loss 等 12 度量学习方法,通过配置文件即可随意组合切换。
- SSLD 知识蒸馏: 14 个分类预训练模型,精度普遍提升 3% 以上;其中 ResNet50_vd 模型在 ImageNet-1k 数据集上的 Top-1 精度达到了 84.0%,Res2Net200_vd 预训练模型 Top-1 精度高达 85.1% 。
- 数据增广:支持 AutoAugment 、 Cutout 、 Cutmix 等 8 种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。
![](../../images/recognition.gif)
更多关于图像识别快速体验、算法详解、模型训练评估与预测部署方法,请参考[首页 README 文档教程](../../../README_ch.md)
介绍
================================
.. toctree::
:maxdepth: 2
function_intro.md
more_demo/index
## 动漫人物图片识别效果图
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069080-a821e0b7-8a10-4946-bf05-ff093cc16064.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069100-7539d292-1bd8-4655-8a6d-d1f2238bd618.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069103-f91359d4-1197-4a6e-b2f7-434c76a6b704.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069108-ad54ae1d-610d-4cfa-9cd6-8ee8d280d61d.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069114-3c771434-84a8-4e58-961e-d35edfbfe5ef.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069119-e8d85be5-da87-4125-ae8b-9fd4cac139d9.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069124-98c30894-4837-4f2f-8399-3d3ebadfd0a1.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069125-a9edf115-33a1-48bf-9e4f-7edbc4269a1e.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069129-98553a25-00e2-4f0f-9b44-dfc4e4f6b6d1.png " width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069131-f7649bb2-255c-4725-a635-799b8b4d815a.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069135-acb69b89-55db-41ac-9846-e2536ef3d955.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069137-1f0abfdb-6608-432e-bd40-c8e1ab86ef8b.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069140-18c6a439-f117-498d-9cdb-ade71cc2c248.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069145-80452f86-afcf-42b5-8423-328cca9e4750.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069154-63a25c1c-b448-44c2-8baf-eb31952c5476.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069156-1b881c6b-5680-4f9a-aef1-2491af50675d.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069161-8759f3d4-8456-43ea-bf54-99a646d5a109.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069167-937aa847-c661-431c-b3dc-5a3c890b31cd.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069170-43d0dce4-6c62-485d-adf4-364c8467c251.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069175-70bc9e50-b833-4a2a-8a3f-c0775dac49c2.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069179-d01f8a0f-4383-4b08-b064-4e6bb006e745.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069184-d423a84c-c9dd-4125-9dc7-397cae21efc9.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069188-fc4deb80-38a2-4c50-9a29-30cee4c8e374.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069193-77a19ee8-b1e2-4c27-9016-3440a1547470.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069196-5f050524-ac08-4831-89f5-9e9e3ce085c1.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069200-4f963171-c790-4f43-8ca3-2e701ad3731c.jpeg" width = "400" /> </div>
介绍
================================
.. toctree::
:maxdepth: 2
cartoon.md
logo.md
more_demo.md
product.md
vehicle.md
## 商标图片识别效果图
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096687-5b562e2d-0653-4be6-861d-1936a4440df2.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096698-4b95eb4b-6638-47dc-ae48-7b40744a31ba.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096701-4a4b2bd9-85f2-4d55-be4b-be6ab5e0fb81.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096706-ef4ad024-7284-4cb3-975a-779fd06b96f5.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096710-620b0495-cc83-4501-a104-dfe20afb53d2.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096713-48e629aa-c637-4603-b005-18570fa94d6d.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096715-709957f2-50bb-4edb-a6e4-e7d5601872c7.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096717-a74744cc-4fb8-4e78-b1cb-20409582ca52.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096721-d4af003c-7945-4591-9e47-4e428dc2628c.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096726-460af6ab-8595-4fb4-9960-4c66b18bee1e.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096728-81494000-92b5-40ad-a6a7-606dae3548a3.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096731-2e980977-9ee6-4e29-bdf7-8397820f70e8.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096732-7d425b45-6b04-4984-948d-278da13dd802.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096735-a9c85c14-5965-4529-a235-ce00035bd7ab.jpg " width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096736-3182efc6-ba43-4cde-9397-88a131f4fed8.jpg " width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096737-91e6fa24-1eb5-4aba-9271-5a3722cbe35b.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096740-f440f89b-5f95-493a-b087-00c7cd3481ef.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096747-31b924e3-ffb2-45ab-872e-4ff923ed04f1.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096752-1f98c937-5d83-4c29-b495-01971b5fb258.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096756-a994c7e2-b9e7-40ba-9934-78c10666217b.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096757-879749e0-9e04-4d1e-a07b-6a4322975a84.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096761-5b682ce8-4f83-4fbb-bfb7-df749912aa8b.png " width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096767-e8f701eb-d0e8-4304-b031-e2bff8c199f3.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096778-ec2ad374-b9fc-427e-9e8b-8e5d2afc6394.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096783-9ec5e04d-19e3-463d-ad9d-7a26202bbb9c.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096788-44f04979-18ca-4ba6-b833-7489b344ffff.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096791-6989451e-157c-4101-8b54-7578b05eb7c9.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096796-cc4477cf-016c-4b19-86c3-61824704ecf5.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096798-ba33ee0d-45b8-48ad-a8fa-14cd643a6976.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096805-e29a2ba8-4785-4ca6-9e0d-596fad6ce8dc.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096812-7d8c57a5-fbae-4496-8144-3b40ac74fef0.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096816-50f0ac3d-f2eb-4011-a34e-58e2e215b7b0.jpg " width = "400" /> </div>
## 识别效果展示
- 商品识别
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277277-7b29f596-35f6-4f00-8d2b-0ef0be57a090.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277291-f7d2b2a1-5790-4f5b-a0e6-f5c52d04a69a.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277300-8ce0d5ce-e0ca-46ea-bb9a-74df0df66ae3.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277308-14a097bd-2bcd-41ce-a9e6-5e9cd0bd8b08.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277311-208ae574-a708-46e2-a41e-c639322913b1.jpg" width = "400" /> </div>
[更多效果图](product.md)
- 动漫人物识别
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069108-ad54ae1d-610d-4cfa-9cd6-8ee8d280d61d.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069100-7539d292-1bd8-4655-8a6d-d1f2238bd618.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140069080-a821e0b7-8a10-4946-bf05-ff093cc16064.jpeg" width = "400" /> </div>
[更多效果图](cartoon.md)
- logo识别
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096687-5b562e2d-0653-4be6-861d-1936a4440df2.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096701-4a4b2bd9-85f2-4d55-be4b-be6ab5e0fb81.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096706-ef4ad024-7284-4cb3-975a-779fd06b96f5.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096713-48e629aa-c637-4603-b005-18570fa94d6d.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096752-1f98c937-5d83-4c29-b495-01971b5fb258.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140096767-e8f701eb-d0e8-4304-b031-e2bff8c199f3.jpeg" width = "400" /> </div>
[更多效果图](logo.md)
- 车辆识别
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243899-c60f0a51-db9b-438a-9f2d-0d2893c200bb.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243905-7eeb938d-d88f-4540-a667-06e08dcf1f55.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243911-735a6ec0-a624-4965-b3cd-2b9f52fa8d65.jpeg" width = "400" /> </div>
[更多效果图](vehicle.md)
## 商品图片识别效果图
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277277-7b29f596-35f6-4f00-8d2b-0ef0be57a090.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277287-7bdad02a-8e3c-4e04-861c-95a5dae1f3c6.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277291-f7d2b2a1-5790-4f5b-a0e6-f5c52d04a69a.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277294-80aaab94-5109-41be-97f8-3ada73118963.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277296-2a8d7846-cd2e-454e-8b72-46233da09451.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277300-8ce0d5ce-e0ca-46ea-bb9a-74df0df66ae3.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277302-25c973eb-f9aa-42ce-b9e9-66cee738c241.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277303-3d3460da-c6aa-4994-b585-17bc9f3df504.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277306-20cbef71-cc58-4ae1-965b-4806e82988a9.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277308-14a097bd-2bcd-41ce-a9e6-5e9cd0bd8b08.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277309-be092d1c-6513-472c-8b7f-685f4353ae5b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277311-208ae574-a708-46e2-a41e-c639322913b1.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277314-72901737-5ef5-4a23-820b-1db58c5e6ca0.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277318-aef4080c-24f2-4d92-be3c-45b500b75584.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277320-8046d0df-1256-41ce-a8d6-6d2c1292462c.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277321-e3864473-6a8e-485f-81f2-562b902d6cff.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277324-0aacc27f-699a-437b-bac0-4a20c90b47b1.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277328-8d28f754-8645-4c05-a9a6-0312bbe2f890.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277333-59da1513-e7e5-455c-ab73-7a3162216923.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277335-454c0423-5398-4348-aaab-e2652fd08999.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277338-a7d09c28-1b86-4cf5-bd79-99d51c5b5311.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277343-9c456d21-8018-4cd5-9c0b-cc7c087fac69.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277345-2ef780f1-d7c9-4cf2-a370-f220a052eb71.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277347-baa4b870-7fca-4d4c-8528-fad720270024.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277351-e0691080-ede4-49ae-9075-d36a41cebf25.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277354-509f8f85-f171-44e9-8ca1-4c3cae77b5fb.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277357-39d572b8-60ee-44db-9e0e-2c0ea2be2ed3.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277359-6caf33f6-2a38-48e5-b349-f4dd1ef2566b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277362-260daa87-1db7-4f89-ba9c-1b32876fd3b6.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277366-14cfd2f9-d044-4288-843e-463a1816163e.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277368-b0e96341-e030-4e4d-8010-6f7c3bc94d2f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277370-1f26e4e5-9988-4427-a035-44bfd9d472d6.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277372-27e60b60-cd5c-4b05-ae38-2e9524c627f3.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277374-bd292bb2-e1f9-4d5f-aa49-d67ac571d01b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277377-b0b8cdb9-8196-4598-ae47-b615914bf6bf.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277382-fc89d18a-a57b-4331-adbb-bda3584fb122.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277386-d676467c-9846-4051-8192-b3e089d01cdc.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277390-83f66d3f-c415-47e6-b651-6b51fbe59bbf.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277394-9895d654-3163-4dd9-882c-ac5a893e2ad3.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277396-9e5e3aa3-6d9e-40ab-a325-2edea452156d.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277399-b92e2092-eabd-45c8-bf36-b2e238167892.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277404-285f943a-de70-48b8-9545-53e229b7350d.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277406-0b7ec434-f064-4985-80f3-c00735b3e32d.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277408-4f9b8b19-42c2-4ba4-bf6d-b95ababe0313.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277409-6df0faf7-71b7-4c9a-a875-36ae7ee7129d.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277411-9c2b364a-749d-465e-a85d-29a69e9ff3ef.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277413-c54a462c-dd3b-4ad0-985d-ef0ec1f216ec.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277414-6d922055-cd59-4f84-b5b6-651209d6336a.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277417-78e1322e-4039-4232-b217-1be4f207f804.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277419-181822a3-bae6-4c4f-9959-59e991c2df6c.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277422-76f09d84-cb47-4332-aa88-a12458cd8993.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277424-a72203b5-1a99-4464-a39c-245f7a891f25.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277429-521ac9a6-e4c3-4c74-9c5b-8e8dd6cddf34.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277433-4f9fb9c8-7930-4303-b54e-a6eace347923.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277434-f3aa3565-a2c5-4c1c-ab44-930a8b073b5f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277437-90cf1cd7-6a62-4ac4-ac85-3aa534e50cee.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277439-54e168bc-9518-429e-9e97-cb9ca5e811c9.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277441-a3c277d7-c889-4556-b74a-400cadf8b771.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277442-22a0cd38-acd8-4b5a-8e59-c4bea852fb79.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277444-ea662034-c17f-47ba-9ea3-694d3cb0c880.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277448-a71f4a0a-c3cc-4432-a803-843b7c65307f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277449-0b3a2e98-3e09-4bd6-be32-c35f44154e8a.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277452-e36ccc63-8e39-4973-a336-4ace855d25e6.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277454-bddd9527-b189-4771-ab9e-52085db5a44d.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277455-7ea277ba-bc75-48db-9567-40e1acb56f02.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277460-0f5ee4dc-5ece-45d5-8ef9-666f1be41b76.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277461-37cab773-6341-4c91-b1f4-780d530eab3b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277465-8f53ef9d-0465-4a90-afac-b1dd3c970b72.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277467-655ddabe-cbe0-4d1f-a30e-c2965428e8d7.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277470-4587e905-3fc8-4dad-84ee-0844ba4d2474.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277473-a155944f-efe3-492a-babc-2f3fe700a99b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277475-c95ab821-f5ae-427a-8721-8991f9c7f29f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277479-55b59855-2ed6-4526-9481-6b92b25fef97.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277484-556f0e4c-007b-4f6a-b21f-c485f630cbcb.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277486-a39eb069-bc13-415e-b936-ba294216dfac.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277487-80952841-6a76-4fb3-8049-fe15ce8f7cfb.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277491-e892a6a8-6f9a-46c7-83e0-261cfb92d276.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277494-520f483e-654d-4399-9684-1fcd9778b76e.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277496-54b1ada5-e6a6-4654-a8a6-739511cec750.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277500-ff7e2afd-9cd7-484a-bd1e-362226f5197f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277501-94489261-bea5-4492-bf3e-98cc8aaa7a7f.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277504-567a32bc-a573-4154-a9cd-6acbec923768.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277506-e893d4d5-43ce-4df1-9f08-3cdf6a8c7e2c.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277509-5766629f-bb92-4552-b34a-647e29b9a89b.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277511-8821708b-09f0-4aab-86dd-40ae3794697a.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277515-ed6a0dff-bd91-4233-a9af-e2744df7c7e0.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277519-1883d6a1-9348-4514-8924-dde27dd38704.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277524-b9d8515c-4df2-410a-b4a6-da098cb9da61.jpg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140277526-52a9c666-a799-4921-b371-41d97d7d9242.jpg" width = "400" /> </div>
## 车辆图片识别效果图
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243899-c60f0a51-db9b-438a-9f2d-0d2893c200bb.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243904-fdbe2e01-dc7c-449a-8e9e-baea4f85fee4.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243905-7eeb938d-d88f-4540-a667-06e08dcf1f55.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243908-c7f1e3ea-92a7-429b-888c-732b9ec5398f.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243911-735a6ec0-a624-4965-b3cd-2b9f52fa8d65.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243913-baec489a-5463-472b-b5d1-418bcd4eb978.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243916-f50dfcdd-2d5f-48f9-876f-dbc05f4afa30.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243920-7a65ec82-8312-421e-985a-c394f11af28f.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243922-458e6dca-fb80-4baf-951e-9651080dc242.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243926-5df3036b-9ea1-441c-b30a-b4f847df25ab.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243927-7673d94a-fbb0-4a92-a3f3-c879a432a7db.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243928-91082855-c5a7-4a3f-aeea-7a2e51e43183.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243929-88fe7efa-b212-4105-af2f-2248a6cb2877.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243933-49e71d02-8228-40ec-99b2-3ed862bf4ba5.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243935-530fbfa3-0d34-4d9d-bd59-2fde5659f7e5.jpeg" width = "400" /> </div>
<div align="center"> <img src="https://user-images.githubusercontent.com/12560511/140243940-d289fc7d-d343-4aa5-a807-9ce09a241ccd.jpeg" width = "400" /> </div>
@ECHO OFF
pushd %~dp0
REM Command file for Sphinx documentation
if "%SPHINXBUILD%" == "" (
set SPHINXBUILD=sphinx-build
)
set SOURCEDIR=source
set BUILDDIR=build
if "%1" == "" goto help
%SPHINXBUILD% >NUL 2>NUL
if errorlevel 9009 (
echo.
echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
echo.installed, then set the SPHINXBUILD environment variable to point
echo.to the full path of the 'sphinx-build' executable. Alternatively you
echo.may add the Sphinx directory to PATH.
echo.
echo.If you don't have Sphinx installed, grab it from
echo.https://www.sphinx-doc.org/
exit /b 1
)
%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
goto end
:help
%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
:end
popd
......@@ -15,13 +15,13 @@ DPN 的全称是 Dual Path Networks,即双通道网络。该网络是由 Dense
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.DPN.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.DPN.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.DPN.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.DPN.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.DPN.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs4.DPN.png)
目前 PaddleClas 开源的这两类模型的预训练模型一共有 10 个,其指标如上图所示,可以看到,在相同的 FLOPS 和参数量下,相比 DenseNet,DPN 拥有更高的精度。但是由于 DPN 有更多的分支,所以其推理速度要慢于 DenseNet。由于 DenseNet264 的网络层数最深,所以该网络是 DenseNet 系列模型中参数量最大的网络,DenseNet161 的网络的宽度最大,导致其是该系列中网络中计算量最大、精度最高的网络。从推理速度来看,计算量大且精度高的的 DenseNet161 比 DenseNet264 具有更快的速度,所以其比 DenseNet264 具有更大的优势。
......
......@@ -16,13 +16,13 @@ ResNeXt 是 facebook 于 2016 年提出的一种对 ResNet 的改进版网络。
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.EfficientNet.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs1.EfficientNet.png)
![](../../images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs1.EfficientNet.png)
目前 PaddleClas 开源的这两类模型的预训练模型一共有 14 个。从上图中可以看出 EfficientNet 系列网络优势非常明显,ResNeXt101_wsl 系列模型由于用到了更多的数据,最终的精度也更高。EfficientNet_B0_Small 是去掉了 SE_block 的 EfficientNet_B0,其具有更快的推理速度。
......
......@@ -14,13 +14,13 @@ HRNet 是 2019 年由微软亚洲研究院提出的一种全新的神经网络
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.HRNet.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs4.HRNet.png)
目前 PaddleClas 开源的这类模型的预训练模型一共有 7 个,其指标如图所示,其中 HRNet_W48_C 指标精度异常的原因可能是因为网络训练的正常波动。
......
......@@ -32,4 +32,3 @@ HarDNet(Harmonic DenseNet)是 2019 年由国立清华大学提出的一种
| HarDNet85 | 224 | 256 | 6.24 | 14.85 | 20.57 |
| HarDNet39_ds | 224 | 256 | 1.40 | 2.30 | 3.33 |
| HarDNet68_ds | 224 | 256 | 2.26 | 3.34 | 5.06 |
......@@ -22,13 +22,13 @@ InceptionV4 是 2016 年由 Google 设计的新的神经网络,当时残差结
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.Inception.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.Inception.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.Inception.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.Inception.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.Inception.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs4.Inception.png)
上图反映了 Xception 系列和 InceptionV4 的精度和其他指标的关系。其中 Xception_deeplab 与论文结构保持一致,Xception 是 PaddleClas 的改进模型,在预测速度基本不变的情况下,精度提升约 0.6%。关于该改进模型的详细介绍正在持续更新中,敬请期待。
......
......@@ -21,13 +21,13 @@ MobileNetV3 是 Google 于 2019 年提出的一种基于 NAS 的新的轻量级
GhostNet 是华为于 2020 年提出的一种全新的轻量化网络结构,通过引入 ghost module,大大减缓了传统深度网络中特征的冗余计算问题,使得网络的参数量和计算量大大降低。
![](../../images/models/mobile_arm_top1.png)
![](../../../images/models/mobile_arm_top1.png)
![](../../images/models/mobile_arm_storage.png)
![](../../../images/models/mobile_arm_storage.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.mobile_trt.params.png)
目前 PaddleClas 开源的的移动端系列的预训练模型一共有 35 个,其指标如图所示。从图片可以看出,越新的轻量级模型往往有更优的表现,MobileNetV3 代表了目前主流的轻量级神经网络结构。在 MobileNetV3 中,作者为了获得更高的精度,在 global-avg-pooling 后使用了 1x1 的卷积。该操作大幅提升了参数量但对计算量影响不大,所以如果从存储角度评价模型的优异程度,MobileNetV3 优势不是很大,但由于其更小的计算量,使得其有更快的推理速度。此外,我们模型库中的 ssld 蒸馏模型表现优异,从各个考量角度下,都刷新了当前轻量级模型的精度。由于 MobileNetV3 模型结构复杂,分支较多,对 GPU 并不友好,GPU 预测速度不如 MobileNetV1。GhostNet 于 2020 年提出,通过引入 ghost 的网络设计理念,大大降低了计算量和参数量,同时在精度上也超过前期最高的 MobileNetV3 网络结构。
......
......@@ -44,11 +44,11 @@ PP-HGNet 作者针对 GPU 设备,对目前 GPU 友好的网络做了分析和
PP-HGNet 骨干网络的整体结构如下:
![](../../images/PP-HGNet/PP-HGNet.png)
![](../../../images/PP-HGNet/PP-HGNet.png)
其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:
![](../../images/PP-HGNet/PP-HGNet-block.png)
![](../../../images/PP-HGNet/PP-HGNet-block.png)
<a name='1.3'></a>
......@@ -66,7 +66,7 @@ PP-HGNet 目前提供的模型的精度、速度指标及预训练权重链接
**备注:**
* 1. `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../advanced_tutorials/knowledge_distillation.md)
* 1. `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../../training/advanced/knowledge_distillation.md)
* 2. PP-HGNet 更多模型指标及权重,敬请期待。
PP-HGNet 与其他模型的比较如下,其中测试机器为 NVIDIA® Tesla® V100,开启 TensorRT 引擎,精度类型为 FP32。在相同速度下,PP-HGNet 精度均超越了其他 SOTA CNN 模型,在与 SwinTransformer 模型的比较中,在更高精度的同时,速度快 2 倍以上。
......@@ -147,7 +147,7 @@ Predict complete!
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='PPHGNet_small')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
infer_imgs = 'docs/images/deployment/whl_demo.jpg'
result = clas.predict(infer_imgs)
print(next(result))
```
......@@ -169,7 +169,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -203,7 +203,7 @@ cd path_to_PaddleClas
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -379,7 +379,7 @@ ILSVRC2012_val_00030010.jpeg: class id(s): [80, 83, 136, 23, 93], score(s): [0.8
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
......@@ -387,7 +387,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
......@@ -395,7 +395,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
......@@ -403,5 +403,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -49,14 +49,14 @@
在计算机视觉领域中,骨干网络的好坏直接影响到整个视觉任务的结果。在之前的一些工作中,相关的研究者普遍将 FLOPs 或者 Params 作为优化目的,但是在工业界真实落地的场景中,推理速度才是考量模型好坏的重要指标,然而,推理速度和准确性很难兼得。考虑到工业界有很多基于 Intel CPU 的应用,所以我们本次的工作旨在使骨干网络更好的适应 Intel CPU,从而得到一个速度更快、准确率更高的轻量级骨干网络,与此同时,目标检测、语义分割等下游视觉任务的性能也同样得到提升。
近年来,有很多轻量级的骨干网络问世,尤其最近两年,各种 NAS 搜索出的网络层出不穷,这些网络要么主打 FLOPs 或者 Params 上的优势,要么主打 ARM 设备上的推理速度的优势,很少有网络专门针对 Intel CPU 做特定的优化,导致这些网络在 Intel CPU 端的推理速度并不是很完美。基于此,我们针对 Intel CPU 设备以及其加速库 MKLDNN 设计了特定的骨干网络 PP-LCNet,比起其他的轻量级的 SOTA 模型,该骨干网络可以在不增加推理时间的情况下,进一步提升模型的性能,最终大幅度超越现有的 SOTA 模型。与其他模型的对比图如下。
![](../../images/PP-LCNet/PP-LCNet-Acc.png)
![](../../../images/PP-LCNet/PP-LCNet-Acc.png)
<a name="1.2"></a>
### 1.2 模型细节
网络结构整体如下图所示。
![](../../images/PP-LCNet/PP-LCNet.png)
![](../../../images/PP-LCNet/PP-LCNet.png)
我们经过大量的实验发现,在基于 Intel CPU 设备上,尤其当启用 MKLDNN 加速库后,很多看似不太耗时的操作反而会增加延时,比如 elementwise-add 操作、split-concat 结构等。所以最终我们选用了结构尽可能精简、速度尽可能快的 block 组成我们的 BaseNet(类似 MobileNetV1)。基于 BaseNet,我们通过实验,总结了四条几乎不增加延时但是可以提升模型精度的方法,融合这四条策略,我们组合成了 PP-LCNet。下面对这四条策略一一介绍:
<a name="1.2.1"></a>
......@@ -136,7 +136,7 @@ BaseNet 经过以上四个方面的改进,得到了 PP-LCNet。下表进一步
| PPLCNet_x1_0_ssld | 3.0 | 161 | 74.39 | 92.09 | 2.46 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_ssld_infer.tar) |
| PPLCNet_x2_5_ssld | 9.0 | 906 | 80.82 | 95.33 | 5.39 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_ssld_infer.tar) |
其中 `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../advanced_tutorials/knowledge_distillation.md)
其中 `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../../training/advanced/knowledge_distillation.md)
与其他轻量级网络的性能对比:
......@@ -291,7 +291,7 @@ Predict complete!
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='PPLCNet_x1_0')
infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
infer_imgs='docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
......@@ -312,7 +312,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -346,7 +346,7 @@ cd path_to_PaddleClas
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -522,7 +522,7 @@ ILSVRC2012_val_00030010.jpeg: class id(s): [80, 23, 93, 81, 99], score(s): [0.87
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
......@@ -530,7 +530,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
......@@ -538,7 +538,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
......
......@@ -43,13 +43,13 @@
### 1.1 模型简介
骨干网络对计算机视觉下游任务的影响不言而喻,不仅对下游模型的性能影响很大,而且模型效率也极大地受此影响,但现有的大多骨干网络在真实应用中的效率并不理想,特别是缺乏针对 Intel CPU 平台所优化的骨干网络,我们测试了现有的主流轻量级模型,发现在 Intel CPU 平台上的效率并不理想,然而目前 Intel CPU 平台在工业界仍有大量使用场景,因此我们提出了 PP-LCNet 系列模型,PP-LCNetV2 是在 [PP-LCNetV1](./PP-LCNet.md) 基础上所改进的。
骨干网络对计算机视觉下游任务的影响不言而喻,不仅对下游模型的性能影响很大,而且模型效率也极大地受此影响,但现有的大多骨干网络在真实应用中的效率并不理想,特别是缺乏针对 Intel CPU 平台所优化的骨干网络,我们测试了现有的主流轻量级模型,发现在 Intel CPU 平台上的效率并不理想,然而目前 Intel CPU 平台在工业界仍有大量使用场景,因此我们提出了 PP-LCNet 系列模型,PP-LCNetV2 是在 [PP-LCNetV1](PP-LCNet.md) 基础上所改进的。
<a name="1.2"></a>
## 1.2 模型细节
![](../../images/PP-LCNetV2/net.png)
![](../../../images/PP-LCNetV2/net.png)
PP-LCNetV2 模型的网络整体结构如上图所示。PP-LCNetV2 模型是在 PP-LCNetV1 的基础上优化而来,主要使用重参数化策略组合了不同大小卷积核的深度卷积,并优化了点卷积、Shortcut等。
......@@ -59,7 +59,7 @@ PP-LCNetV2 模型的网络整体结构如上图所示。PP-LCNetV2 模型是在
卷积核的大小决定了卷积层感受野的大小,通过组合使用不同大小的卷积核,能够获取不同尺度的特征,因此 PPLCNetV2 在 Stage4、Stage5 中,在同一层组合使用 kernel size 分别为 5、3、1 的 DW 卷积,同时为了避免对模型效率的影响,使用重参数化(Re parameterization,Rep)策略对同层的 DW 卷积进行融合,如下图所示。
![](../../images/PP-LCNetV2/rep.png)
![](../../../images/PP-LCNetV2/rep.png)
<a name="1.2.2"></a>
......@@ -67,7 +67,7 @@ PP-LCNetV2 模型的网络整体结构如上图所示。PP-LCNetV2 模型是在
深度可分离卷积通常由一层 DW 卷积和一层 PW 卷积组成,用以替换标准卷积,为了使深度可分离卷积具有更强的拟合能力,我们尝试使用两层 PW 卷积,同时为了控制模型效率不受影响,两层 PW 卷积设置为:第一个在通道维度对特征图压缩,第二个再通过放大还原特征图通道,如下图所示。通过实验发现,该策略能够显著提高模型性能,同时为了平衡对模型效率带来的影响,PPLCNetV2 仅在 Stage4 中使用了该策略。
![](../../images/PP-LCNetV2/split_pw.png)
![](../../../images/PP-LCNetV2/split_pw.png)
<a name="1.2.3"></a>
......@@ -75,7 +75,7 @@ PP-LCNetV2 模型的网络整体结构如上图所示。PP-LCNetV2 模型是在
残差结构(residual)自提出以来,被诸多模型广泛使用,但在轻量级卷积神经网络中,由于残差结构所带来的元素级(element-wise)加法操作,会对模型的速度造成影响,我们在 PP-LCNetV2 中,以 Stage 为单位实验了残差结构对模型的影响,发现残差结构的使用并非一定会带来性能的提高,因此 PPLCNetV2 仅在最后一个 Stage 中的使用了残差结构:在 Block 中增加 Shortcut,如下图所示。
![](../../images/PP-LCNetV2/shortcut.png)
![](../../../images/PP-LCNetV2/shortcut.png)
<a name="1.2.4"></a>
......@@ -102,7 +102,7 @@ PPLCNetV2 目前提供的模型的精度、速度指标及预训练权重链接
**备注:**
* 1. `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../advanced_tutorials/knowledge_distillation.md)
* 1. `_ssld` 表示使用 `SSLD 蒸馏`后的模型。关于 `SSLD蒸馏` 的内容,详情 [SSLD 蒸馏](../../training/advanced/knowledge_distillation.md)
* 2. PP-LCNetV2 更多模型指标及权重,敬请期待。
在不使用额外数据的前提下,PPLCNetV2_base 模型在图像分类 ImageNet 数据集上能够取得超过 77% 的 Top1 Acc,同时在 Intel CPU 平台的推理时间在 4.4 ms 以下,如下表所示,其中推理时间基于 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz 硬件平台,OpenVINO 推理平台。
......@@ -169,7 +169,7 @@ Predict complete
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='PPLCNetV2_base')
infer_imgs='docs/images/inference_deployment/whl_demo.jpg'
infer_imgs='docs/images/deployment/whl_demo.jpg'
result=clas.predict(infer_imgs)
print(next(result))
```
......@@ -191,7 +191,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -225,7 +225,7 @@ cd path_to_PaddleClas
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -401,7 +401,7 @@ ILSVRC2012_val_00030010.jpeg: class id(s): [80, 143, 81, 137, 98], score(s): [0.
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
......@@ -409,7 +409,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
......@@ -417,7 +417,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
......@@ -425,4 +425,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
model_list.md
\ No newline at end of file
......@@ -181,7 +181,7 @@ Predict complete!
```python
from paddleclas import PaddleClas
clas = PaddleClas(model_name='ResNet50')
infer_imgs = 'docs/images/inference_deployment/whl_demo.jpg'
infer_imgs = 'docs/images/deployment/whl_demo.jpg'
result = clas.predict(infer_imgs)
print(next(result))
```
......@@ -203,7 +203,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -237,7 +237,7 @@ cd path_to_PaddleClas
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -413,7 +413,7 @@ ILSVRC2012_val_00030010.jpeg: class id(s): [80, 23, 83, 93, 136], score(s): [1.0
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
......@@ -421,7 +421,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
......@@ -429,7 +429,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
......
......@@ -21,13 +21,13 @@ ResNet 系列模型是在 2015 年提出的,一举在 ILSVRC2015 比赛中取
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.ResNet.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.ResNet.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs4.ResNet.png)
通过上述曲线可以看出,层数越多,准确率越高,但是相应的参数量、计算量和延时都会增加。ResNet50_vd_ssld 通过用更强的 teacher 和更多的数据,将其在 ImageNet-1k 上的验证集 top-1 精度进一步提高,达到了 82.39%,刷新了 ResNet50 系列模型的精度。
......
......@@ -20,13 +20,13 @@ Res2Net 是 2019 年提出的一种全新的对 ResNet 的改进方案,该方
该系列模型的 FLOPS、参数量以及 T4 GPU 上的预测耗时如下图所示。
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.flops.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png)
![](../../../images/models/T4_benchmark/t4.fp32.bs4.SeResNeXt.png)
![](../../images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png)
![](../../../images/models/T4_benchmark/t4.fp16.bs4.SeResNeXt.png)
目前 PaddleClas 开源的这三类的预训练模型一共有 24 个,其指标如图所示,从图中可以看出,在同样 Flops 和 Params 下,改进版的模型往往有更高的精度,但是推理速度往往不如 ResNet 系列。另一方面,Res2Net 表现也较为优秀,相比 ResNeXt 中的 group 操作、SEResNet 中的 SE 结构操作,Res2Net 在相同 Flops、Params 和推理速度下往往精度更佳。
......
......@@ -70,14 +70,14 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2)
<a name="3"></a>
## 3. 模型训练、评估和预测
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
......@@ -92,19 +92,19 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)
Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#4.1)
<a name="4.2"></a>
### 4.2 基于 Python 预测引擎推理
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 对 SwinTransformer 完成推理预测。
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#4.2) 对 SwinTransformer 完成推理预测。
<a name="4.3"></a>
### 4.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="4.4"></a>
......@@ -112,7 +112,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="4.5"></a>
......@@ -120,7 +120,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="4.6"></a>
......
......@@ -15,7 +15,7 @@
[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) 是飞桨推出的一套功能完善、易用性强且性能卓越的轻量化推理引擎。
轻量化体现在使用较少比特数用于表示神经网络的权重和激活,能够大大降低模型的体积,解决终端设备存储空间有限的问题,推理性能也整体优于其他框架。
[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) 使用 Paddle-Lite 进行了[移动端模型的性能评估](../models/Mobile.md),本部分以 `ImageNet1k` 数据集的 `MobileNetV1` 模型为例,介绍怎样使用 `Paddle-Lite`,在移动端(基于骁龙855的安卓开发平台)对进行模型速度评估。
[PaddleClas](https://github.com/PaddlePaddle/PaddleClas) 使用 Paddle-Lite 进行了[移动端模型的性能评估](./Mobile.md),本部分以 `ImageNet1k` 数据集的 `MobileNetV1` 模型为例,介绍怎样使用 `Paddle-Lite`,在移动端(基于骁龙855的安卓开发平台)对进行模型速度评估。
<a name='2'></a>
......
......@@ -40,10 +40,10 @@ PP-ShiTuV2 是基于 PP-ShiTuV1 改进的一个实用轻量级通用图像识别
| :--------- | :---------------------- | :------------------ |
| | | recall@1 |
| PP-ShiTuV1 | 64(30+34)MB | 66.8% |
| PP-ShiTuV2 | 49(30+19) | 73.8% |
| PP-ShiTuV2 | 49(30+19)MB | 73.8% |
**注:**
- recall及mAP指标的介绍可以参考 [常用指标](../algorithm_introduction/reid.md#22-常用指标)
- recall及mAP指标的介绍可以参考 [常用指标](../../algorithm_introduction/ReID.md#22-常用指标)
- 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
## 2. 模型快速体验
......@@ -109,17 +109,17 @@ PP-ShiTuV2 是基于 PP-ShiTuV1 改进的一个实用轻量级通用图像识别
考虑到检测速度、模型大小、检测精度等因素,最终选择 PaddleDetection 自研的轻量级模型 `PicoDet-LCNet_x2_5` 作为 PP-ShiTuV2 的主体检测模型
主体检测模型的数据集、训练、评估、推理等详细信息可以参考文档:[picodet_lcnet_x2_5_640_mainbody](../image_recognition_pipeline/mainbody_detection.md)
主体检测模型的数据集、训练、评估、推理等详细信息可以参考文档:[picodet_lcnet_x2_5_640_mainbody](../../training/PP-ShiTu/mainbody_detection.md)
### 3.2 特征提取
特征提取是图像识别中的关键一环,它的作用是将输入的图片转化为固定维度的特征向量,用于后续的 [向量检索](./vector_search.md) 。考虑到特征提取模型的速度、模型大小、特征提取性能等因素,最终选择 PaddleClas 自研的 [`PPLCNetV2_base`](../models/PP-LCNetV2.md) 作为特征提取网络。相比 PP-ShiTuV1 所使用的 `PPLCNet_x2_5``PPLCNetV2_base` 基本保持了较高的分类精度,并减少了40%的推理时间<sup>*</sup>
特征提取是图像识别中的关键一环,它的作用是将输入的图片转化为固定维度的特征向量,用于后续的 [向量检索](./vector_search.md) 。考虑到特征提取模型的速度、模型大小、特征提取性能等因素,最终选择 PaddleClas 自研的 [`PPLCNetV2_base`](../ImageNet1k/PP-LCNetV2.md) 作为特征提取网络。相比 PP-ShiTuV1 所使用的 `PPLCNet_x2_5``PPLCNetV2_base` 基本保持了较高的分类精度,并减少了40%的推理时间<sup>*</sup>
**注:** <sup>*</sup>推理环境基于 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz 硬件平台,OpenVINO 推理平台。
在实验过程中我们也发现可以对 `PPLCNetV2_base` 进行适当的改进,在保持速度基本不变的情况下,让其在识别任务中得到更高的性能,包括:去掉 `PPLCNetV2_base` 末尾的 `ReLU``FC`、将最后一个 stage(RepDepthwiseSeparable) 的 stride 改为1。
特征提取模型的数据集、训练、评估、推理等详细信息可以参考文档:[PPLCNetV2_base_ShiTu](../image_recognition_pipeline/feature_extraction.md)
特征提取模型的数据集、训练、评估、推理等详细信息可以参考文档:[PPLCNetV2_base_ShiTu](../../training/PP-ShiTu/feature_extraction.md)
### 3.3 向量检索
......@@ -127,7 +127,7 @@ PP-ShiTuV2 是基于 PP-ShiTuV1 改进的一个实用轻量级通用图像识别
在 PP-ShiTuV2 识别系统中,我们使用了 [Faiss](https://github.com/facebookresearch/faiss) 向量检索开源库对此部分进行支持,其具有适配性好、安装方便、算法丰富、同时支持CPU与GPU的优点。
PP-ShiTuV2 系统中关于 Faiss 向量检索库的安装及使用可以参考文档:[vector search](../image_recognition_pipeline/vector_search.md)
PP-ShiTuV2 系统中关于 Faiss 向量检索库的安装及使用可以参考文档:[vector search](../../deployment/PP-ShiTu/vector_search.md)
## 4. 推理部署
......@@ -137,7 +137,7 @@ Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择 [直接下载 inference 模型](#412-直接下载-inference-模型) 的方式。
#### 4.1.1 基于训练得到的权重导出 inference 模型
- 主体检测模型权重导出请参考文档 [主体检测推理模型准备](../image_recognition_pipeline/mainbody_detection.md#41-推理模型准备),或者参照 [4.1.2](#412-直接下载-inference-模型) 直接下载解压即可。
- 主体检测模型权重导出请参考文档 [主体检测推理模型准备](../../training/PP-ShiTu/mainbody_detection.md#41-推理模型准备),或者参照 [4.1.2](#412-直接下载-inference-模型) 直接下载解压即可。
- 特征提取模型权重导出可以参考以下命令:
```shell
......@@ -234,12 +234,12 @@ Inference: 37.95266151428223 ms per batch image
其中 `bbox` 表示检测出的主体所在位置,`rec_docs` 表示索引库中与检测框最为相似的类别,`rec_scores` 表示对应的相似度。
### 4.4 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考 [服务器端 C++ 预测](../../../deploy/cpp_shitu/readme.md) 来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考 [基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md) 完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考 [服务器端 C++ 预测](../../../../deploy/cpp_shitu/readme.md) 来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考 [基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md) 完成相应的预测库编译和模型预测工作。
### 4.5 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考 [Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考 [模型服务化部署](../inference_deployment/recognition_serving_deploy.md) 来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考 [模型服务化部署](../../deployment/PP-ShiTu/paddle_serving.md) 来完成相应的部署工作。
### 4.6 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考 [Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
......@@ -247,7 +247,7 @@ Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深
### 4.7 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考 [Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考 [Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md) 来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考 [Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md) 来完成相应的部署工作。
## 参考文献
1. Schall, Konstantin, et al. "GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval." International Conference on Multimedia Modeling. Springer, Cham, 2022.
......
......@@ -59,7 +59,7 @@
**备注:**
* `Tpr`指标的介绍可以参考 [3.3节](#3.3)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -140,7 +140,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -166,7 +166,7 @@ print(next(result))
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/car_exists_data_demo.jpeg)
![](../../../images/PULC/docs/car_exists_data_demo.jpeg)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
......@@ -208,9 +208,9 @@ cd ../
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md#3.2)
<a name="3.3"></a>
......@@ -285,7 +285,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -326,7 +326,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -443,7 +443,7 @@ objects365_00001521.jpeg: class id(s): [0], score(s): [0.99], label_name(s
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -451,7 +451,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -459,7 +459,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -467,4 +467,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -53,7 +53,7 @@
**备注:**
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -133,7 +133,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -145,7 +145,7 @@ print(next(result))
[第1节](#1)中提供的模型使用内部数据训练得到,该数据集暂时不方便公开。这里基于 [Multi-lingual scene text detection and recognition](https://rrc.cvc.uab.es/?ch=15&com=downloads) 开源数据集构造了一个多语种demo数据集,用于体验本案例的预测过程。
![](../../images/PULC/docs/language_classification_original_data.png)
![](../../../images/PULC/docs/language_classification_original_data.png)
<a name="3.2.2"></a>
......@@ -198,7 +198,7 @@ cd ../
***备注:***
- 这里的`label_list.txt`是4类语种分类模型对应的类别列表,如果自己构造的数据集语种类别发生变化,需要自行调整。
- 如果想要自己构造训练集和验证集,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
- 如果想要自己构造训练集和验证集,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -265,7 +265,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -309,7 +309,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -426,7 +426,7 @@ word_35404.png: class id(s): [4, 6], score(s): [0.89, 0.01], label_name(s): [
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -434,7 +434,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -442,7 +442,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -450,4 +450,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -60,7 +60,7 @@
**备注:**
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -140,7 +140,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -273,7 +273,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -314,7 +314,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -426,7 +426,7 @@ python3.7 python/predict_cls.py -c configs/PULC/person_attribute/inference_perso
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -434,7 +434,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -442,7 +442,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -450,4 +450,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -59,7 +59,7 @@
**备注:**
* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -139,7 +139,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档[环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -163,7 +163,7 @@ print(next(result))
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/person_exists_data_demo.png)
![](../../../images/PULC/docs/person_exists_data_demo.png)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
......@@ -210,9 +210,9 @@ cd ../
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md#3.2)
<a name="3.3"></a>
......@@ -287,7 +287,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -328,7 +328,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -445,7 +445,7 @@ objects365_02035329.jpg: class id(s): [1], score(s): [1.00], label_name(s): ['so
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -453,7 +453,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -461,7 +461,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -469,4 +469,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -59,7 +59,7 @@
* `Tpr`指标的介绍可以参考 [3.3小节](#3.3)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启MKLDNN加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -139,7 +139,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -165,7 +165,7 @@ print(next(result))
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/safety_helmet_data_demo.jpg)
![](../../../images/PULC/docs/safety_helmet_data_demo.jpg)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
......@@ -201,7 +201,7 @@ cd ../
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -273,7 +273,7 @@ python3 tools/infer.py \
### 4.1 UDML 知识蒸馏
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[UDML 知识蒸馏](../advanced_tutorials/knowledge_distillation.md#1.2.3)
UDML 知识蒸馏是一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[UDML 知识蒸馏](../../training/advanced/knowledge_distillation.md#1.2.3)
<a name="4.1.1"></a>
......@@ -295,7 +295,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注**:此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -411,7 +411,7 @@ safety_helmet_test_2.png: class id(s): [0], score(s): [1.00], label_name(s
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -419,7 +419,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -427,7 +427,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -435,4 +435,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -52,7 +52,7 @@
**备注:**
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -131,7 +131,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -143,7 +143,7 @@ print(next(result))
[第1节](#1)中提供的模型使用内部数据训练得到,该数据集暂时不方便公开。这里基于 [ICDAR2019-ArT](https://ai.baidu.com/broad/introduction?dataset=art)[XFUND](https://github.com/doc-analysis/XFUND)[ICDAR2015](https://rrc.cvc.uab.es/?ch=4&com=introduction) 三个公开数据集构造了一个小规模含文字图像方向分类数据集,用于体验本案例。
![](../../images/PULC/docs/text_image_orientation_original_data.png)
![](../../../images/PULC/docs/text_image_orientation_original_data.png)
<a name="3.2.2"></a>
......@@ -155,7 +155,7 @@ print(next(result))
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/text_image_orientation_data_demo.png)
![](../../../images/PULC/docs/text_image_orientation_data_demo.png)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
......@@ -205,13 +205,13 @@ cd ../
└── label_list.txt
```
其中`img_0/``img_90/``img_180/``img_270/`分别存放了4个角度的训练集和验证集数据。`train_list.txt``test_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug``test_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt``test_list.txt`的子集,用该文件可以快速体验本案例的流程。`distill_data/`是补充文字数据,该集合和`train`集合的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](../advanced_tutorials/ssld.md#3.2)
其中`img_0/``img_90/``img_180/``img_270/`分别存放了4个角度的训练集和验证集数据。`train_list.txt``test_list.txt`分别为训练集和验证集的标签文件,`train_list.txt.debug``test_list.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`train_list.txt``test_list.txt`的子集,用该文件可以快速体验本案例的流程。`distill_data/`是补充文字数据,该集合和`train`集合的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`train_list_for_distill.txt`。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](../../training/advanced/ssld.md#3.2)
**备注:**
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md#3.2)
<a name="3.3"></a>
......@@ -277,7 +277,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -319,7 +319,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -433,7 +433,7 @@ img_rot180_demo.jpg: class id(s): [2, 1], score(s): [0.88, 0.04], label_name(
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -441,7 +441,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -449,7 +449,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -457,4 +457,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -59,9 +59,9 @@
**备注:**
* 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h\*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h\*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[超参数搜索策略](PULC_train.md#4-超参搜索)搜索得到的。
* 其中不带\*的模型表示分辨率为224x224,带\*的模型表示分辨率为48x192(h\*w),数据增强从网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,该策略为 [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) 提供的文本行方向分类器方案。带\*\*的模型表示分辨率为80x160(h\*w), 网络中的 stride 改为 `[2, [2, 1], [2, 1], [2, 1], [2, 1]]`,其中,外层列表中的每一个元素代表网络结构下采样层的stride,此分辨率是经过[超参数搜索策略](../../training/PULC.md#4-超参搜索)搜索得到的。
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -139,7 +139,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -165,7 +165,7 @@ print(next(result))
处理后的数据集部分数据可视化如下:
![](../../images/PULC/docs/textline_orientation_data_demo.png)
![](../../../images/PULC/docs/textline_orientation_data_demo.png)
此处提供了经过上述方法处理好的数据,可以直接下载得到。
......@@ -203,7 +203,7 @@ cd ../
**备注:**
* 关于 `train_list.txt``val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `train_list.txt``val_list.txt` 的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
<a name="3.3"></a>
......@@ -273,7 +273,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -314,7 +314,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。
......@@ -430,7 +430,7 @@ textline_orientation_test_1_1.png: class id(s): [1], score(s): [1.00], label_
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -438,7 +438,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -446,7 +446,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -454,4 +454,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -58,7 +58,7 @@
**备注:**
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -138,7 +138,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -234,9 +234,9 @@ traffic_sign
**备注:**
* 关于 `label_list_train.txt``label_list_test.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
* 关于 `label_list_train.txt``label_list_test.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../../training/single_label_classification/dataset.md#1-数据集格式说明)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md)
* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../../training/advanced/ssld.md)
<a name="3.3"></a>
......@@ -303,7 +303,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md#3.2)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md#3.2)
<a name="4.1.1"></a>
......@@ -344,7 +344,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -458,7 +458,7 @@ python3.7 python/predict_cls.py -c configs/PULC/traffic_sign/inference_traffic_s
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -466,7 +466,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -474,7 +474,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -482,4 +482,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
......@@ -60,7 +60,7 @@
**备注:**
* 延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
* 关于PP-LCNet的介绍可以参考[PP-LCNet介绍](../ImageNet1k/PP-LCNet.md),相关论文可以查阅[PP-LCNet paper](https://arxiv.org/abs/2109.15099)
<a name="2"></a>
......@@ -141,7 +141,7 @@ print(next(result))
### 3.1 环境配置
* 安装:请先参考文档 [环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
* 安装:请先参考文档 [环境准备](../../installation.md) 配置 PaddleClas 运行环境。
<a name="3.2"></a>
......@@ -297,7 +297,7 @@ python3 tools/infer.py \
### 4.1 SKL-UGI 知识蒸馏
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../../training/advanced/ssld.md)
<a name="4.1.1"></a>
......@@ -338,7 +338,7 @@ python3 -m paddle.distributed.launch \
## 5. 超参搜索
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](PULC_train.md#4-超参搜索)来获得更好的训练超参数。
[3.3 节](#3.3)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[超参数搜索策略](../../training/PULC.md#4-超参搜索)来获得更好的训练超参数。
**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
......@@ -450,7 +450,7 @@ python3.7 python/predict_cls.py -c configs/PULC/vehicle_attribute/inference_vehi
### 6.3 基于 C++ 预测引擎推理
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
<a name="6.4"></a>
......@@ -458,7 +458,7 @@ PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
<a name="6.5"></a>
......@@ -466,7 +466,7 @@ PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
<a name="6.6"></a>
......@@ -474,4 +474,4 @@ PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../../deploy/paddle2onnx/readme.md)来完成相应的部署工作。
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。
model_list.md
\ No newline at end of file
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册