Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
1303affa
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
1 年多 前同步成功
通知
116
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1303affa
编写于
5月 13, 2021
作者:
W
Wei Shengyu
提交者:
GitHub
5月 13, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #720 from lyuwenyu/hub_L_b
Release unnecessary dependent pkgs
上级
e8752538
72ab665b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
808 addition
and
816 deletion
+808
-816
hubconf.py
hubconf.py
+808
-816
未找到文件。
hubconf.py
浏览文件 @
1303affa
...
@@ -12,821 +12,813 @@
...
@@ -12,821 +12,813 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
dependencies
=
[
'paddle'
,
'numpy'
]
dependencies
=
[
'paddle'
]
import
paddle
import
paddle
from
ppcls.modeling
import
architectures
import
os
import
sys
def
_load_pretrained_parameters
(
model
,
name
):
url
=
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'
.
format
(
class
_SysPathG
(
object
):
name
)
"""
path
=
paddle
.
utils
.
download
.
get_weights_path_from_url
(
url
)
_SysPathG used to add/clean path for sys.path. Making sure minimal pkgs dependents by skiping parent dirs.
model
.
set_state_dict
(
paddle
.
load
(
path
))
return
model
__enter__
add path into sys.path
__exit__
def
alexnet
(
pretrained
=
False
,
**
kwargs
):
clean user's sys.path to avoid unexpect behaviors
"""
"""
AlexNet
Args:
def
__init__
(
self
,
path
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
self
.
path
=
path
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
__enter__
(
self
,
):
Returns:
sys
.
path
.
insert
(
0
,
self
.
path
)
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
def
__exit__
(
self
,
type
,
value
,
traceback
):
model
=
architectures
.
AlexNet
(
**
kwargs
)
_p
=
sys
.
path
.
pop
(
0
)
if
pretrained
:
assert
_p
==
self
.
path
,
'Make sure sys.path cleaning {} correctly.'
.
format
(
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
self
.
path
)
return
model
with
_SysPathG
(
os
.
path
.
join
(
def
vgg11
(
pretrained
=
False
,
**
kwargs
):
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
'ppcls'
,
'modeling'
)):
"""
import
architectures
VGG11
Args:
def
_load_pretrained_parameters
(
model
,
name
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
url
=
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'
.
format
(
kwargs:
name
)
class_dim: int=1000. Output dim of last fc layer.
path
=
paddle
.
utils
.
download
.
get_weights_path_from_url
(
url
)
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
model
.
set_state_dict
(
paddle
.
load
(
path
))
Returns:
return
model
model: nn.Layer. Specific `VGG11` model depends on args.
"""
def
alexnet
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
VGG11
(
**
kwargs
)
"""
if
pretrained
:
AlexNet
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
def
vgg13
(
pretrained
=
False
,
**
kwargs
):
model: nn.Layer. Specific `AlexNet` model depends on args.
"""
"""
VGG13
model
=
architectures
.
AlexNet
(
**
kwargs
)
Args:
if
pretrained
:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
_load_pretrained_parameters
(
model
,
'AlexNet'
)
kwargs:
class_dim: int=1000. Output dim of last fc layer.
return
model
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
def
vgg11
(
pretrained
=
False
,
**
kwargs
):
model: nn.Layer. Specific `VGG13` model depends on args.
"""
"""
VGG11
model
=
architectures
.
VGG13
(
**
kwargs
)
Args:
if
pretrained
:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
kwargs:
class_dim: int=1000. Output dim of last fc layer.
return
model
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
model: nn.Layer. Specific `VGG11` model depends on args.
def
vgg16
(
pretrained
=
False
,
**
kwargs
):
"""
"""
model
=
architectures
.
VGG11
(
**
kwargs
)
VGG16
if
pretrained
:
Args:
model
=
_load_pretrained_parameters
(
model
,
'VGG11'
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
return
model
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
def
vgg13
(
pretrained
=
False
,
**
kwargs
):
Returns:
"""
model: nn.Layer. Specific `VGG16` model depends on args.
VGG13
"""
Args:
model
=
architectures
.
VGG16
(
**
kwargs
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
if
pretrained
:
kwargs:
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
class_dim: int=1000. Output dim of last fc layer.
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
return
model
Returns:
model: nn.Layer. Specific `VGG13` model depends on args.
"""
def
vgg19
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
VGG13
(
**
kwargs
)
"""
if
pretrained
:
VGG19
model
=
_load_pretrained_parameters
(
model
,
'VGG13'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
vgg16
(
pretrained
=
False
,
**
kwargs
):
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
"""
Returns:
VGG16
model: nn.Layer. Specific `VGG19` model depends on args.
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
architectures
.
VGG19
(
**
kwargs
)
kwargs:
if
pretrained
:
class_dim: int=1000. Output dim of last fc layer.
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
Returns:
return
model
model: nn.Layer. Specific `VGG16` model depends on args.
"""
model
=
architectures
.
VGG16
(
**
kwargs
)
def
resnet18
(
pretrained
=
False
,
**
kwargs
):
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'VGG16'
)
ResNet18
Args:
return
model
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
def
vgg19
(
pretrained
=
False
,
**
kwargs
):
class_dim: int=1000. Output dim of last fc layer.
"""
input_image_channel: int=3. The number of input image channels
VGG19
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Args:
Returns:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model: nn.Layer. Specific `ResNet18` model depends on args.
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
model
=
architectures
.
ResNet18
(
**
kwargs
)
stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False`
if
pretrained
:
Returns:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
model: nn.Layer. Specific `VGG19` model depends on args.
"""
return
model
model
=
architectures
.
VGG19
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'VGG19'
)
def
resnet34
(
pretrained
=
False
,
**
kwargs
):
"""
return
model
ResNet34
Args:
def
resnet18
(
pretrained
=
False
,
**
kwargs
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
ResNet18
class_dim: int=1000. Output dim of last fc layer.
Args:
input_image_channel: int=3. The number of input image channels
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
kwargs:
Returns:
class_dim: int=1000. Output dim of last fc layer.
model: nn.Layer. Specific `ResNet34` model depends on args.
input_image_channel: int=3. The number of input image channels
"""
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
model
=
architectures
.
ResNet34
(
**
kwargs
)
Returns:
if
pretrained
:
model: nn.Layer. Specific `ResNet18` model depends on args.
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
"""
model
=
architectures
.
ResNet18
(
**
kwargs
)
return
model
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet18'
)
def
resnet50
(
pretrained
=
False
,
**
kwargs
):
return
model
"""
ResNet50
def
resnet34
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
ResNet34
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
input_image_channel: int=3. The number of input image channels
kwargs:
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
class_dim: int=1000. Output dim of last fc layer.
Returns:
input_image_channel: int=3. The number of input image channels
model: nn.Layer. Specific `ResNet50` model depends on args.
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
"""
Returns:
model
=
architectures
.
ResNet50
(
**
kwargs
)
model: nn.Layer. Specific `ResNet34` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
model
=
architectures
.
ResNet34
(
**
kwargs
)
if
pretrained
:
return
model
model
=
_load_pretrained_parameters
(
model
,
'ResNet34'
)
return
model
def
resnet101
(
pretrained
=
False
,
**
kwargs
):
"""
def
resnet50
(
pretrained
=
False
,
**
kwargs
):
ResNet101
"""
Args:
ResNet50
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Args:
kwargs:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
class_dim: int=1000. Output dim of last fc layer.
kwargs:
input_image_channel: int=3. The number of input image channels
class_dim: int=1000. Output dim of last fc layer.
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
input_image_channel: int=3. The number of input image channels
Returns:
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
model: nn.Layer. Specific `ResNet101` model depends on args.
Returns:
"""
model: nn.Layer. Specific `ResNet50` model depends on args.
model
=
architectures
.
ResNet101
(
**
kwargs
)
"""
if
pretrained
:
model
=
architectures
.
ResNet50
(
**
kwargs
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet50'
)
return
model
return
model
def
resnet152
(
pretrained
=
False
,
**
kwargs
):
def
resnet101
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet152
ResNet101
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
input_image_channel: int=3. The number of input image channels
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
Returns:
Returns:
model: nn.Layer. Specific `ResNet152` model depends on args.
model: nn.Layer. Specific `ResNet101` model depends on args.
"""
"""
model
=
architectures
.
ResNet152
(
**
kwargs
)
model
=
architectures
.
ResNet101
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
model
=
_load_pretrained_parameters
(
model
,
'ResNet101'
)
return
model
return
model
def
resnet152
(
pretrained
=
False
,
**
kwargs
):
def
squeezenet1_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
ResNet152
SqueezeNet1_0
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
input_image_channel: int=3. The number of input image channels
Returns:
data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC')
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
Returns:
"""
model: nn.Layer. Specific `ResNet152` model depends on args.
model
=
architectures
.
SqueezeNet1_0
(
**
kwargs
)
"""
if
pretrained
:
model
=
architectures
.
ResNet152
(
**
kwargs
)
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNet152'
)
return
model
return
model
def
squeezenet1_1
(
pretrained
=
False
,
**
kwargs
):
def
squeezenet1_0
(
pretrained
=
False
,
**
kwargs
):
"""
"""
SqueezeNet1_1
SqueezeNet1_0
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
Returns:
Returns:
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
model: nn.Layer. Specific `SqueezeNet1_0` model depends on args.
"""
"""
model
=
architectures
.
SqueezeNet1_1
(
**
kwargs
)
model
=
architectures
.
SqueezeNet1_0
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_0'
)
return
model
return
model
def
squeezenet1_1
(
pretrained
=
False
,
**
kwargs
):
def
densenet121
(
pretrained
=
False
,
**
kwargs
):
"""
"""
SqueezeNet1_1
DenseNet121
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
Returns:
dropout: float=0. Probability of setting units to zero.
model: nn.Layer. Specific `SqueezeNet1_1` model depends on args.
bn_size: int=4. The number of channals per group
"""
Returns:
model
=
architectures
.
SqueezeNet1_1
(
**
kwargs
)
model: nn.Layer. Specific `DenseNet121` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'SqueezeNet1_1'
)
model
=
architectures
.
DenseNet121
(
**
kwargs
)
if
pretrained
:
return
model
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
def
densenet121
(
pretrained
=
False
,
**
kwargs
):
return
model
"""
DenseNet121
Args:
def
densenet161
(
pretrained
=
False
,
**
kwargs
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
DenseNet161
class_dim: int=1000. Output dim of last fc layer.
Args:
dropout: float=0. Probability of setting units to zero.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
bn_size: int=4. The number of channals per group
kwargs:
Returns:
class_dim: int=1000. Output dim of last fc layer.
model: nn.Layer. Specific `DenseNet121` model depends on args.
dropout: float=0. Probability of setting units to zero.
"""
bn_size: int=4. The number of channals per group
model
=
architectures
.
DenseNet121
(
**
kwargs
)
Returns:
if
pretrained
:
model: nn.Layer. Specific `DenseNet161` model depends on args.
model
=
_load_pretrained_parameters
(
model
,
'DenseNet121'
)
"""
model
=
architectures
.
DenseNet161
(
**
kwargs
)
return
model
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
def
densenet161
(
pretrained
=
False
,
**
kwargs
):
"""
return
model
DenseNet161
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
def
densenet169
(
pretrained
=
False
,
**
kwargs
):
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
DenseNet169
dropout: float=0. Probability of setting units to zero.
Args:
bn_size: int=4. The number of channals per group
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `DenseNet161` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
dropout: float=0. Probability of setting units to zero.
model
=
architectures
.
DenseNet161
(
**
kwargs
)
bn_size: int=4. The number of channals per group
if
pretrained
:
Returns:
model
=
_load_pretrained_parameters
(
model
,
'DenseNet161'
)
model: nn.Layer. Specific `DenseNet169` model depends on args.
"""
return
model
model
=
architectures
.
DenseNet169
(
**
kwargs
)
if
pretrained
:
def
densenet169
(
pretrained
=
False
,
**
kwargs
):
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
"""
DenseNet169
return
model
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
def
densenet201
(
pretrained
=
False
,
**
kwargs
):
class_dim: int=1000. Output dim of last fc layer.
"""
dropout: float=0. Probability of setting units to zero.
DenseNet201
bn_size: int=4. The number of channals per group
Args:
Returns:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model: nn.Layer. Specific `DenseNet169` model depends on args.
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
model
=
architectures
.
DenseNet169
(
**
kwargs
)
dropout: float=0. Probability of setting units to zero.
if
pretrained
:
bn_size: int=4. The number of channals per group
model
=
_load_pretrained_parameters
(
model
,
'DenseNet169'
)
Returns:
model: nn.Layer. Specific `DenseNet201` model depends on args.
return
model
"""
model
=
architectures
.
DenseNet201
(
**
kwargs
)
def
densenet201
(
pretrained
=
False
,
**
kwargs
):
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
DenseNet201
Args:
return
model
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
densenet264
(
pretrained
=
False
,
**
kwargs
):
dropout: float=0. Probability of setting units to zero.
"""
bn_size: int=4. The number of channals per group
DenseNet264
Returns:
Args:
model: nn.Layer. Specific `DenseNet201` model depends on args.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
model
=
architectures
.
DenseNet201
(
**
kwargs
)
class_dim: int=1000. Output dim of last fc layer.
if
pretrained
:
dropout: float=0. Probability of setting units to zero.
model
=
_load_pretrained_parameters
(
model
,
'DenseNet201'
)
bn_size: int=4. The number of channals per group
Returns:
return
model
model: nn.Layer. Specific `DenseNet264` model depends on args.
"""
def
densenet264
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
DenseNet264
(
**
kwargs
)
"""
if
pretrained
:
DenseNet264
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
dropout: float=0. Probability of setting units to zero.
def
inceptionv3
(
pretrained
=
False
,
**
kwargs
):
bn_size: int=4. The number of channals per group
"""
Returns:
InceptionV3
model: nn.Layer. Specific `DenseNet264` model depends on args.
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
architectures
.
DenseNet264
(
**
kwargs
)
kwargs:
if
pretrained
:
class_dim: int=1000. Output dim of last fc layer.
model
=
_load_pretrained_parameters
(
model
,
'DenseNet264'
)
Returns:
model: nn.Layer. Specific `InceptionV3` model depends on args.
return
model
"""
model
=
architectures
.
InceptionV3
(
**
kwargs
)
def
inceptionv3
(
pretrained
=
False
,
**
kwargs
):
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
InceptionV3
Args:
return
model
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
inceptionv4
(
pretrained
=
False
,
**
kwargs
):
Returns:
"""
model: nn.Layer. Specific `InceptionV3` model depends on args.
InceptionV4
"""
Args:
model
=
architectures
.
InceptionV3
(
**
kwargs
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
if
pretrained
:
kwargs:
model
=
_load_pretrained_parameters
(
model
,
'InceptionV3'
)
class_dim: int=1000. Output dim of last fc layer.
Returns:
return
model
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
def
inceptionv4
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
InceptionV4
(
**
kwargs
)
"""
if
pretrained
:
InceptionV4
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
def
googlenet
(
pretrained
=
False
,
**
kwargs
):
model: nn.Layer. Specific `InceptionV4` model depends on args.
"""
"""
GoogLeNet
model
=
architectures
.
InceptionV4
(
**
kwargs
)
Args:
if
pretrained
:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
_load_pretrained_parameters
(
model
,
'InceptionV4'
)
kwargs:
class_dim: int=1000. Output dim of last fc layer.
return
model
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
def
googlenet
(
pretrained
=
False
,
**
kwargs
):
"""
"""
model
=
architectures
.
GoogLeNet
(
**
kwargs
)
GoogLeNet
if
pretrained
:
Args:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
return
model
class_dim: int=1000. Output dim of last fc layer.
Returns:
model: nn.Layer. Specific `GoogLeNet` model depends on args.
def
shufflenetv2_x0_25
(
pretrained
=
False
,
**
kwargs
):
"""
"""
model
=
architectures
.
GoogLeNet
(
**
kwargs
)
ShuffleNetV2_x0_25
if
pretrained
:
Args:
model
=
_load_pretrained_parameters
(
model
,
'GoogLeNet'
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
return
model
class_dim: int=1000. Output dim of last fc layer.
Returns:
def
shufflenetv2_x0_25
(
pretrained
=
False
,
**
kwargs
):
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
"""
"""
ShuffleNetV2_x0_25
model
=
architectures
.
ShuffleNetV2_x0_25
(
**
kwargs
)
Args:
if
pretrained
:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
kwargs:
class_dim: int=1000. Output dim of last fc layer.
return
model
Returns:
model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args.
"""
def
mobilenetv1
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
ShuffleNetV2_x0_25
(
**
kwargs
)
"""
if
pretrained
:
MobileNetV1
model
=
_load_pretrained_parameters
(
model
,
'ShuffleNetV2_x0_25'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
mobilenetv1
(
pretrained
=
False
,
**
kwargs
):
Returns:
"""
model: nn.Layer. Specific `MobileNetV1` model depends on args.
MobileNetV1
"""
Args:
model
=
architectures
.
MobileNetV1
(
**
kwargs
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
if
pretrained
:
kwargs:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
class_dim: int=1000. Output dim of last fc layer.
Returns:
return
model
model: nn.Layer. Specific `MobileNetV1` model depends on args.
"""
model
=
architectures
.
MobileNetV1
(
**
kwargs
)
def
mobilenetv1_x0_25
(
pretrained
=
False
,
**
kwargs
):
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1'
)
MobileNetV1_x0_25
Args:
return
model
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
def
mobilenetv1_x0_25
(
pretrained
=
False
,
**
kwargs
):
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
MobileNetV1_x0_25
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
architectures
.
MobileNetV1_x0_25
(
**
kwargs
)
kwargs:
if
pretrained
:
class_dim: int=1000. Output dim of last fc layer.
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
Returns:
model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args.
return
model
"""
model
=
architectures
.
MobileNetV1_x0_25
(
**
kwargs
)
if
pretrained
:
def
mobilenetv1_x0_5
(
pretrained
=
False
,
**
kwargs
):
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_25'
)
"""
MobileNetV1_x0_5
return
model
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
def
mobilenetv1_x0_5
(
pretrained
=
False
,
**
kwargs
):
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
MobileNetV1_x0_5
Returns:
Args:
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
model
=
architectures
.
MobileNetV1_x0_5
(
**
kwargs
)
class_dim: int=1000. Output dim of last fc layer.
if
pretrained
:
Returns:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args.
"""
return
model
model
=
architectures
.
MobileNetV1_x0_5
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_5'
)
def
mobilenetv1_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
return
model
MobileNetV1_x0_75
Args:
def
mobilenetv1_x0_75
(
pretrained
=
False
,
**
kwargs
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
MobileNetV1_x0_75
class_dim: int=1000. Output dim of last fc layer.
Args:
Returns:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
model
=
architectures
.
MobileNetV1_x0_75
(
**
kwargs
)
Returns:
if
pretrained
:
model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args.
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
"""
model
=
architectures
.
MobileNetV1_x0_75
(
**
kwargs
)
return
model
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV1_x0_75'
)
def
mobilenetv2_x0_25
(
pretrained
=
False
,
**
kwargs
):
return
model
"""
MobileNetV2_x0_25
def
mobilenetv2_x0_25
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV2_x0_25
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV2_x0_25
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
model
=
architectures
.
MobileNetV2_x0_25
(
**
kwargs
)
if
pretrained
:
return
model
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_25'
)
return
model
def
mobilenetv2_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
def
mobilenetv2_x0_5
(
pretrained
=
False
,
**
kwargs
):
MobileNetV2_x0_5
"""
Args:
MobileNetV2_x0_5
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Args:
kwargs:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
class_dim: int=1000. Output dim of last fc layer.
kwargs:
Returns:
class_dim: int=1000. Output dim of last fc layer.
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
Returns:
"""
model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args.
model
=
architectures
.
MobileNetV2_x0_5
(
**
kwargs
)
"""
if
pretrained
:
model
=
architectures
.
MobileNetV2_x0_5
(
**
kwargs
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_5'
)
return
model
return
model
def
mobilenetv2_x0_75
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv2_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x0_75
MobileNetV2_x0_75
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args.
"""
"""
model
=
architectures
.
MobileNetV2_x0_75
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x0_75
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x0_75'
)
return
model
return
model
def
mobilenetv2_x1_5
(
pretrained
=
False
,
**
kwargs
):
def
mobilenetv2_x1_5
(
pretrained
=
False
,
**
kwargs
):
"""
"""
MobileNetV2_x1_5
MobileNetV2_x1_5
Args:
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
kwargs:
class_dim: int=1000. Output dim of last fc layer.
class_dim: int=1000. Output dim of last fc layer.
Returns:
Returns:
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args.
"""
"""
model
=
architectures
.
MobileNetV2_x1_5
(
**
kwargs
)
model
=
architectures
.
MobileNetV2_x1_5
(
**
kwargs
)
if
pretrained
:
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x1_5'
)
return
model
return
model
def
mobilenetv2_x2_0
(
pretrained
=
False
,
**
kwargs
):
"""
def
mobilenetv2_x2_0
(
pretrained
=
False
,
**
kwargs
):
MobileNetV2_x2_0
"""
Args:
MobileNetV2_x2_0
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Args:
kwargs:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
class_dim: int=1000. Output dim of last fc layer.
kwargs:
Returns:
class_dim: int=1000. Output dim of last fc layer.
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
Returns:
"""
model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args.
model
=
architectures
.
MobileNetV2_x2_0
(
**
kwargs
)
"""
if
pretrained
:
model
=
architectures
.
MobileNetV2_x2_0
(
**
kwargs
)
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV2_x2_0'
)
return
model
return
model
def
mobilenetv3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_large_x0_35
def
mobilenetv3_large_x0_35
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_large_x0_35
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_large_x0_35
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_large_x0_35
(
**
kwargs
)
'MobileNetV3_large_x0_35'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_35'
)
return
model
return
model
def
mobilenetv3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_large_x0_5
def
mobilenetv3_large_x0_5
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_large_x0_5
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_large_x0_5
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_large_x0_5
(
**
kwargs
)
'MobileNetV3_large_x0_5'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_5'
)
return
model
return
model
def
mobilenetv3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_large_x0_75
def
mobilenetv3_large_x0_75
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_large_x0_75
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_large_x0_75
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_large_x0_75
(
**
kwargs
)
'MobileNetV3_large_x0_75'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x0_75'
)
return
model
return
model
def
mobilenetv3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_large_x1_0
def
mobilenetv3_large_x1_0
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_large_x1_0
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_large_x1_0
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_large_x1_0
(
**
kwargs
)
'MobileNetV3_large_x1_0'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_0'
)
return
model
return
model
def
mobilenetv3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_large_x1_25
def
mobilenetv3_large_x1_25
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_large_x1_25
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_large_x1_25
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_large_x1_25
(
**
kwargs
)
'MobileNetV3_large_x1_25'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_large_x1_25'
)
return
model
return
model
def
mobilenetv3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_small_x0_35
def
mobilenetv3_small_x0_35
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_small_x0_35
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_small_x0_35
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_small_x0_35
(
**
kwargs
)
'MobileNetV3_small_x0_35'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_35'
)
return
model
return
model
def
mobilenetv3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_small_x0_5
def
mobilenetv3_small_x0_5
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_small_x0_5
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_small_x0_5
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_small_x0_5
(
**
kwargs
)
'MobileNetV3_small_x0_5'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_5'
)
return
model
return
model
def
mobilenetv3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_small_x0_75
def
mobilenetv3_small_x0_75
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_small_x0_75
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_small_x0_75
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_small_x0_75
(
**
kwargs
)
'MobileNetV3_small_x0_75'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x0_75'
)
return
model
return
model
def
mobilenetv3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_small_x1_0
def
mobilenetv3_small_x1_0
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_small_x1_0
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_small_x1_0
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_small_x1_0
(
**
kwargs
)
'MobileNetV3_small_x1_0'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_0'
)
return
model
return
model
def
mobilenetv3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
"""
MobileNetV3_small_x1_25
def
mobilenetv3_small_x1_25
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
MobileNetV3_small_x1_25
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
MobileNetV3_small_x1_25
(
**
kwargs
)
model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
model
=
architectures
.
MobileNetV3_small_x1_25
(
**
kwargs
)
'MobileNetV3_small_x1_25'
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'MobileNetV3_small_x1_25'
)
return
model
return
model
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""
ResNeXt101_32x4d
def
resnext101_32x4d
(
pretrained
=
False
,
**
kwargs
):
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
ResNeXt101_32x4d
kwargs:
Args:
class_dim: int=1000. Output dim of last fc layer.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
Returns:
kwargs:
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
model
=
architectures
.
ResNeXt101_32x4d
(
**
kwargs
)
model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args.
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
model
=
architectures
.
ResNeXt101_32x4d
(
**
kwargs
)
if
pretrained
:
return
model
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_32x4d'
)
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
return
model
"""
ResNeXt101_64x4d
Args:
def
resnext101_64x4d
(
pretrained
=
False
,
**
kwargs
):
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
ResNeXt101_64x4d
class_dim: int=1000. Output dim of last fc layer.
Args:
Returns:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
model
=
architectures
.
ResNeXt101_64x4d
(
**
kwargs
)
Returns:
if
pretrained
:
model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args.
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
"""
model
=
architectures
.
ResNeXt101_64x4d
(
**
kwargs
)
return
model
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt101_64x4d'
)
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
"""
return
model
ResNeXt152_32x4d
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
def
resnext152_32x4d
(
pretrained
=
False
,
**
kwargs
):
kwargs:
"""
class_dim: int=1000. Output dim of last fc layer.
ResNeXt152_32x4d
Returns:
Args:
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
"""
kwargs:
model
=
architectures
.
ResNeXt152_32x4d
(
**
kwargs
)
class_dim: int=1000. Output dim of last fc layer.
if
pretrained
:
Returns:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args.
"""
return
model
model
=
architectures
.
ResNeXt152_32x4d
(
**
kwargs
)
if
pretrained
:
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_32x4d'
)
"""
ResNeXt152_64x4d
return
model
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
def
resnext152_64x4d
(
pretrained
=
False
,
**
kwargs
):
class_dim: int=1000. Output dim of last fc layer.
"""
Returns:
ResNeXt152_64x4d
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
Args:
"""
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
architectures
.
ResNeXt152_64x4d
(
**
kwargs
)
kwargs:
if
pretrained
:
class_dim: int=1000. Output dim of last fc layer.
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
Returns:
model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args.
return
model
"""
model
=
architectures
.
ResNeXt152_64x4d
(
**
kwargs
)
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
if
pretrained
:
"""
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt152_64x4d'
)
ResNeXt50_32x4d
Args:
return
model
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
kwargs:
class_dim: int=1000. Output dim of last fc layer.
def
resnext50_32x4d
(
pretrained
=
False
,
**
kwargs
):
Returns:
"""
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
ResNeXt50_32x4d
"""
Args:
model
=
architectures
.
ResNeXt50_32x4d
(
**
kwargs
)
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
if
pretrained
:
kwargs:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
class_dim: int=1000. Output dim of last fc layer.
Returns:
return
model
model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args.
"""
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
model
=
architectures
.
ResNeXt50_32x4d
(
**
kwargs
)
"""
if
pretrained
:
ResNeXt50_64x4d
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_32x4d'
)
Args:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
return
model
kwargs:
class_dim: int=1000. Output dim of last fc layer.
Returns:
def
resnext50_64x4d
(
pretrained
=
False
,
**
kwargs
):
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
"""
ResNeXt50_64x4d
model
=
architectures
.
ResNeXt50_64x4d
(
**
kwargs
)
Args:
if
pretrained
:
pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise.
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
kwargs:
class_dim: int=1000. Output dim of last fc layer.
return
model
Returns:
model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args.
"""
model
=
architectures
.
ResNeXt50_64x4d
(
**
kwargs
)
if
pretrained
:
model
=
_load_pretrained_parameters
(
model
,
'ResNeXt50_64x4d'
)
return
model
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录