From 11815ec033ea24a6522623bd66c502dd38226184 Mon Sep 17 00:00:00 2001
From: sibo2rr <1415419833@qq.com>
Date: Tue, 14 Dec 2021 12:39:45 +0800
Subject: [PATCH] add inference model link
---
.../algorithm_introduction/ImageNet_models.md | 84 +++++++++----------
1 file changed, 42 insertions(+), 42 deletions(-)
diff --git a/docs/zh_CN/algorithm_introduction/ImageNet_models.md b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
index 1b5fe840..f7ed570b 100644
--- a/docs/zh_CN/algorithm_introduction/ImageNet_models.md
+++ b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
@@ -173,7 +173,7 @@ ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关
| MobileNetV3_
small_x0_75 | 0.6602 | 0.8633 | 4.50 | 2.96 | 2.19 | 46.02 | 2.38 | 9.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar) |
| MobileNetV3_
small_x0_5 | 0.5921 | 0.8152 | 2.89 | 2.04 | 1.62 | 22.60 | 1.91 | 7.8 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar) |
| MobileNetV3_
small_x0_35 | 0.5303 | 0.7637 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar) |
-| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | |
+| MobileNetV3_
small_x0_35_ssld | 0.5555 | 0.7771 | 2.23 | 1.66 | 1.43 | 14.56 | 1.67 | 6.9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
| MobileNetV3_
large_x1_0_ssld | 0.7896 | 0.9448 | 16.55 | 10.09 | 6.84 | 229.66 | 5.50 | 21 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_
x1_0_ssld | 0.7129 | 0.9010 | 5.63 | 3.65 | 2.60 | 63.67 | 2.95 | 12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| ShuffleNetV2 | 0.6880 | 0.8845 | 9.72 | 5.97 | 4.13 | 148.86 | 2.29 | 9 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar) |
@@ -317,7 +317,7 @@ EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](../models/ResNeSt_RegNet.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型
下载地址 | inference模型
下载地址 |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | time(ms)
bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_
fast_1s1x64d | 0.8035 | 0.9528 | 2.73 | 5.33 | 8.24 | 4.36 | 26.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar) |
| ResNeSt50 | 0.8083 | 0.9542 | 7.36 | 10.23 | 13.84 | 5.40 | 27.54 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) |
@@ -330,28 +330,28 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
-|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
-| ViT_small_
patch16_224 | 0.7769 | 0.9342 | - | - | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) |
-| ViT_base_
patch16_224 | 0.8195 | 0.9617 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) |
-| ViT_base_
patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) |
-| ViT_base_
patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) |
-| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) |
-|ViT_large_
patch16_384| 0.8513 | 0.9736 | - | - | 174.70 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) |
-|ViT_large_
patch32_384| 0.8153 | 0.9608 | - | - | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
+| ViT_small_
patch16_224 | 0.7769 | 0.9342 | - | - | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
+| ViT_base_
patch16_224 | 0.8195 | 0.9617 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
+| ViT_base_
patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
+| ViT_base_
patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
+| ViT_large_
patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
+|ViT_large_
patch16_384| 0.8513 | 0.9736 | - | - | 174.70 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
+|ViT_large_
patch32_384| 0.8153 | 0.9608 | - | - | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
-|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|
-| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | - | - | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) |
-| DeiT_small_
patch16_224 | 0.796 | 0.949 | - | - | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) |
-| DeiT_base_
patch16_224 | 0.817 | 0.957 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) |
-| DeiT_base_
patch16_384 | 0.830 | 0.962 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) |
-| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | - | - | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) |
-| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) |
-| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) |
-| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
+| DeiT_tiny_
patch16_224 | 0.718 | 0.910 | - | - | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
+| DeiT_small_
patch16_224 | 0.796 | 0.949 | - | - | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
+| DeiT_base_
patch16_224 | 0.817 | 0.957 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
+| DeiT_base_
patch16_384 | 0.830 | 0.962 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
+| DeiT_tiny_
distilled_patch16_224 | 0.741 | 0.918 | - | - | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
+| DeiT_small_
distilled_patch16_224 | 0.809 | 0.953 | - | - | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
+| DeiT_base_
distilled_patch16_224 | 0.831 | 0.964 | - | - | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
+| DeiT_base_
distilled_patch16_384 | 0.851 | 0.973 | - | - | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |
@@ -405,16 +405,16 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
-| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
-| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) |
-| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) |
-| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) |
-| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) |
-| SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) |
-| SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) |
-| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | | | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) |
-| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | | | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
+| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
+| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
+| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
+| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
+| SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
+| SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
+| SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | | | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar) |
+| SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | | | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar) |
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
@@ -440,14 +440,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
-| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
-| pcpvt_small | 0.8082 | 0.9552 | | |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) |
-| pcpvt_base | 0.8242 | 0.9619 | | | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) |
-| pcpvt_large | 0.8273 | 0.9650 | | | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) |
-| alt_gvt_small | 0.8140 | 0.9546 | | |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) |
-| alt_gvt_base | 0.8294 | 0.9621 | | | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) |
-| alt_gvt_large | 0.8331 | 0.9642 | | | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
+| pcpvt_small | 0.8082 | 0.9552 | | |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
+| pcpvt_base | 0.8242 | 0.9619 | | | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
+| pcpvt_large | 0.8273 | 0.9650 | | | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
+| alt_gvt_small | 0.8140 | 0.9546 | | |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
+| alt_gvt_base | 0.8294 | 0.9621 | | | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
+| alt_gvt_large | 0.8331 | 0.9642 | | | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |
**注**:与 Reference 的精度差异源于数据预处理不同。
@@ -502,9 +502,9 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)。
-| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 下载地址 |
-| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ |
-| TNT_small | 0.8121 |0.9563 | | | 4.83 | 23.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | |
+| 模型 | Top-1 Acc | Top-5 Acc | time(ms)
bs=1 | time(ms)
bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
+| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
+| TNT_small | 0.8121 |0.9563 | | | 4.83 | 23.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar) |
**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean` 与 `std` 均为 0.5。
--
GitLab