Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleClas
提交
0f908e75
P
PaddleClas
项目概览
PaddlePaddle
/
PaddleClas
大约 1 年 前同步成功
通知
115
Star
4999
Fork
1114
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
19
列表
看板
标记
里程碑
合并请求
6
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleClas
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
19
Issue
19
列表
看板
标记
里程碑
合并请求
6
合并请求
6
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0f908e75
编写于
11月 02, 2021
作者:
S
stephon
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update paddleserving
上级
c8e387f5
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
219 addition
and
48 deletion
+219
-48
deploy/paddleserving/imgs/results_recog.png
deploy/paddleserving/imgs/results_recog.png
+0
-0
deploy/paddleserving/imgs/results_shitu.png
deploy/paddleserving/imgs/results_shitu.png
+0
-0
deploy/paddleserving/imgs/start_server_recog.png
deploy/paddleserving/imgs/start_server_recog.png
+0
-0
deploy/paddleserving/imgs/start_server_shitu.png
deploy/paddleserving/imgs/start_server_shitu.png
+0
-0
deploy/paddleserving/recognition/config.yml
deploy/paddleserving/recognition/config.yml
+2
-2
deploy/paddleserving/recognition/pipeline_http_client.py
deploy/paddleserving/recognition/pipeline_http_client.py
+4
-2
deploy/paddleserving/recognition/recognition_web_service.py
deploy/paddleserving/recognition/recognition_web_service.py
+37
-26
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
+176
-18
未找到文件。
deploy/paddleserving/imgs/results_recog.png
已删除
100644 → 0
浏览文件 @
c8e387f5
28.1 KB
deploy/paddleserving/imgs/results_shitu.png
0 → 100644
浏览文件 @
0f908e75
21.7 KB
deploy/paddleserving/imgs/start_server_recog.png
已删除
100644 → 0
浏览文件 @
c8e387f5
123.3 KB
deploy/paddleserving/imgs/start_server_shitu.png
0 → 100644
浏览文件 @
0f908e75
372.7 KB
deploy/paddleserving/recognition/config.yml
浏览文件 @
0f908e75
...
@@ -18,7 +18,7 @@ op:
...
@@ -18,7 +18,7 @@ op:
local_service_conf
:
local_service_conf
:
#uci模型路径
#uci模型路径
model_config
:
../../models/
product_ResNet50_vd_aliproduct
_v1.0_serving
model_config
:
../../models/
general_PPLCNet_x2_5_lite
_v1.0_serving
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type
:
1
device_type
:
1
...
@@ -40,4 +40,4 @@ op:
...
@@ -40,4 +40,4 @@ op:
devices
:
'
0'
devices
:
'
0'
fetch_list
:
fetch_list
:
-
save_infer_model/scale_0.tmp_1
-
save_infer_model/scale_0.tmp_1
model_config
:
../../models/ppyolov2_r50vd_dcn_mainbody_v1.0_serving/
model_config
:
../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/
\ No newline at end of file
\ No newline at end of file
deploy/paddleserving/recognition/pipeline_http_client.py
浏览文件 @
0f908e75
...
@@ -3,11 +3,13 @@ import json
...
@@ -3,11 +3,13 @@ import json
import
base64
import
base64
import
os
import
os
imgpath
=
"daoxiangcunjinzhubing_6.jpg"
imgpath
=
"../../drink_dataset_v1.0/test_images/001.jpeg"
def
cv2_to_base64
(
image
):
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
url
=
"http://127.0.0.1:18081/recognition/prediction"
url
=
"http://127.0.0.1:18081/recognition/prediction"
...
...
deploy/paddleserving/recognition/recognition_web_service.py
浏览文件 @
0f908e75
...
@@ -23,6 +23,7 @@ import faiss
...
@@ -23,6 +23,7 @@ import faiss
import
pickle
import
pickle
import
json
import
json
class
DetOp
(
Op
):
class
DetOp
(
Op
):
def
init_op
(
self
):
def
init_op
(
self
):
self
.
img_preprocess
=
Sequential
([
self
.
img_preprocess
=
Sequential
([
...
@@ -65,22 +66,28 @@ class DetOp(Op):
...
@@ -65,22 +66,28 @@ class DetOp(Op):
imgs
.
append
({
imgs
.
append
({
"image"
:
im
[
np
.
newaxis
,
:],
"image"
:
im
[
np
.
newaxis
,
:],
"im_shape"
:
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,:],
"im_shape"
:
"scale_factor"
:
np
.
array
([
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
),
np
.
array
(
list
(
im
.
shape
[
1
:])).
reshape
(
-
1
)[
np
.
newaxis
,
:],
"scale_factor"
:
np
.
array
([
im_scale_y
,
im_scale_x
]).
astype
(
'float32'
),
})
})
self
.
raw_img
=
raw_imgs
self
.
raw_img
=
raw_imgs
feed_dict
=
{
feed_dict
=
{
"image"
:
np
.
concatenate
([
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"image"
:
np
.
concatenate
(
"im_shape"
:
np
.
concatenate
([
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
[
x
[
"image"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
([
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
"im_shape"
:
np
.
concatenate
(
[
x
[
"im_shape"
]
for
x
in
imgs
],
axis
=
0
),
"scale_factor"
:
np
.
concatenate
(
[
x
[
"scale_factor"
]
for
x
in
imgs
],
axis
=
0
)
}
}
return
feed_dict
,
False
,
None
,
""
return
feed_dict
,
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
boxes
=
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
)
boxes
=
self
.
img_postprocess
(
fetch_dict
,
visualize
=
False
)
boxes
.
sort
(
key
=
lambda
x
:
x
[
"score"
],
reverse
=
True
)
boxes
.
sort
(
key
=
lambda
x
:
x
[
"score"
],
reverse
=
True
)
boxes
=
filter
(
lambda
x
:
x
[
"score"
]
>=
self
.
threshold
,
boxes
[:
self
.
max_det_results
])
boxes
=
filter
(
lambda
x
:
x
[
"score"
]
>=
self
.
threshold
,
boxes
[:
self
.
max_det_results
])
boxes
=
list
(
boxes
)
boxes
=
list
(
boxes
)
for
i
in
range
(
len
(
boxes
)):
for
i
in
range
(
len
(
boxes
)):
boxes
[
i
][
"bbox"
][
2
]
+=
boxes
[
i
][
"bbox"
][
0
]
-
1
boxes
[
i
][
"bbox"
][
2
]
+=
boxes
[
i
][
"bbox"
][
0
]
-
1
...
@@ -89,15 +96,16 @@ class DetOp(Op):
...
@@ -89,15 +96,16 @@ class DetOp(Op):
res_dict
=
{
"bbox_result"
:
result
,
"image"
:
self
.
raw_img
}
res_dict
=
{
"bbox_result"
:
result
,
"image"
:
self
.
raw_img
}
return
res_dict
,
None
,
""
return
res_dict
,
None
,
""
class
RecOp
(
Op
):
class
RecOp
(
Op
):
def
init_op
(
self
):
def
init_op
(
self
):
self
.
seq
=
Sequential
([
self
.
seq
=
Sequential
([
BGR2RGB
(),
Resize
((
224
,
224
)),
BGR2RGB
(),
Resize
((
224
,
224
)),
Div
(
255
),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
False
),
Transpose
((
2
,
0
,
1
))
False
),
Transpose
((
2
,
0
,
1
))
])
])
index_dir
=
"../../
recognition_demo_data_v1.1/gallery_product
/index"
index_dir
=
"../../
drink_dataset_v1.0
/index"
assert
os
.
path
.
exists
(
os
.
path
.
join
(
assert
os
.
path
.
exists
(
os
.
path
.
join
(
index_dir
,
"vector.index"
)),
"vector.index not found ..."
index_dir
,
"vector.index"
)),
"vector.index not found ..."
assert
os
.
path
.
exists
(
os
.
path
.
join
(
assert
os
.
path
.
exists
(
os
.
path
.
join
(
...
@@ -121,7 +129,8 @@ class RecOp(Op):
...
@@ -121,7 +129,8 @@ class RecOp(Op):
origin_img
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
origin_img
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
dt_boxes
=
input_dict
[
"bbox_result"
]
dt_boxes
=
input_dict
[
"bbox_result"
]
boxes
=
json
.
loads
(
dt_boxes
)
boxes
=
json
.
loads
(
dt_boxes
)
boxes
.
append
({
"category_id"
:
0
,
boxes
.
append
({
"category_id"
:
0
,
"score"
:
1.0
,
"score"
:
1.0
,
"bbox"
:
[
0
,
0
,
origin_img
.
shape
[
1
],
origin_img
.
shape
[
0
]]
"bbox"
:
[
0
,
0
,
origin_img
.
shape
[
1
],
origin_img
.
shape
[
0
]]
})
})
...
@@ -131,14 +140,14 @@ class RecOp(Op):
...
@@ -131,14 +140,14 @@ class RecOp(Op):
imgs
=
[]
imgs
=
[]
for
box
in
boxes
:
for
box
in
boxes
:
box
=
[
int
(
x
)
for
x
in
box
[
"bbox"
]]
box
=
[
int
(
x
)
for
x
in
box
[
"bbox"
]]
im
=
origin_img
[
box
[
1
]:
box
[
3
],
box
[
0
]:
box
[
2
]].
copy
()
im
=
origin_img
[
box
[
1
]:
box
[
3
],
box
[
0
]:
box
[
2
]].
copy
()
img
=
self
.
seq
(
im
)
img
=
self
.
seq
(
im
)
imgs
.
append
(
img
[
np
.
newaxis
,
:].
copy
())
imgs
.
append
(
img
[
np
.
newaxis
,
:].
copy
())
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"x"
:
input_imgs
},
False
,
None
,
""
return
{
"x"
:
input_imgs
},
False
,
None
,
""
def
nms_to_rec_results
(
self
,
results
,
thresh
=
0.1
):
def
nms_to_rec_results
(
self
,
results
,
thresh
=
0.1
):
filtered_results
=
[]
filtered_results
=
[]
x1
=
np
.
array
([
r
[
"bbox"
][
0
]
for
r
in
results
]).
astype
(
"float32"
)
x1
=
np
.
array
([
r
[
"bbox"
][
0
]
for
r
in
results
]).
astype
(
"float32"
)
y1
=
np
.
array
([
r
[
"bbox"
][
1
]
for
r
in
results
]).
astype
(
"float32"
)
y1
=
np
.
array
([
r
[
"bbox"
][
1
]
for
r
in
results
]).
astype
(
"float32"
)
...
@@ -187,12 +196,14 @@ class RecOp(Op):
...
@@ -187,12 +196,14 @@ class RecOp(Op):
results
=
self
.
nms_to_rec_results
(
results
,
self
.
rec_nms_thresold
)
results
=
self
.
nms_to_rec_results
(
results
,
self
.
rec_nms_thresold
)
return
{
"result"
:
str
(
results
)},
None
,
""
return
{
"result"
:
str
(
results
)},
None
,
""
class
RecognitionService
(
WebService
):
class
RecognitionService
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
def
get_pipeline_response
(
self
,
read_op
):
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
])
det_op
=
DetOp
(
name
=
"det"
,
input_ops
=
[
read_op
])
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
])
rec_op
=
RecOp
(
name
=
"rec"
,
input_ops
=
[
det_op
])
return
rec_op
return
rec_op
product_recog_service
=
RecognitionService
(
name
=
"recognition"
)
product_recog_service
=
RecognitionService
(
name
=
"recognition"
)
product_recog_service
.
prepare_pipeline_config
(
"config.yml"
)
product_recog_service
.
prepare_pipeline_config
(
"config.yml"
)
product_recog_service
.
run_service
()
product_recog_service
.
run_service
()
docs/zh_CN/inference_deployment/paddle_serving_deploy.md
浏览文件 @
0f908e75
# 模型服务化部署
# 模型服务化部署
-
[
简介
](
#简介
)
-
[
Serving安装
](
#Serving安装
)
-
[
图像分类服务部署
](
#图像分类服务部署
)
-
[
图像识别服务部署
](
#图像识别服务部署
)
-
[
FAQ
](
#FAQ
)
<a
name=
"简介"
></a>
## 1. 简介
## 1. 简介
[
Paddle Serving
](
https://github.com/PaddlePaddle/Serving
)
旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
[
Paddle Serving
](
https://github.com/PaddlePaddle/Serving
)
旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。
该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。
<a
name=
"Serving安装"
></a>
## 2. Serving安装
## 2. Serving安装
Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。
Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。
...
@@ -22,6 +28,7 @@ nvidia-docker exec -it test bash
...
@@ -22,6 +28,7 @@ nvidia-docker exec -it test bash
pip
install
paddlepaddle-gpu
pip
install
paddlepaddle-gpu
pip
install
paddle-serving-client
pip
install
paddle-serving-client
pip
install
paddle-serving-server-gpu
pip
install
paddle-serving-server-gpu
pip
install
paddle-serving-app
```
```
*
如果安装速度太慢,可以通过
`-i https://pypi.tuna.tsinghua.edu.cn/simple`
更换源,加速安装过程。
*
如果安装速度太慢,可以通过
`-i https://pypi.tuna.tsinghua.edu.cn/simple`
更换源,加速安装过程。
...
@@ -31,35 +38,186 @@ pip install paddle-serving-server-gpu
...
@@ -31,35 +38,186 @@ pip install paddle-serving-server-gpu
```
shell
```
shell
pip
install
paddle-serving-server
pip
install
paddle-serving-server
```
```
<a
name=
"图像分类服务部署"
></a>
## 3.
导出模型
## 3.
图像分类服务部署
### 3.1 模型转换
使用
`tools/export_serving_model.py`
脚本导出 Serving 模型,以
`ResNet50_vd`
为例,使用方法如下
。
使用
PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。下面以经典的ResNet50_vd模型为例,介绍如何部署图像分类服务
。
-
进入工作目录:
```
shell
```
shell
python tools/export_serving_model.py
-m
ResNet50_vd
-p
./pretrained/ResNet50_vd_pretrained/
-o
serving
cd
deploy/paddleserving
```
-
下载ResNet50_vd的inference模型:
```
shell
# 下载并解压ResNet50_vd模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar
&&
tar
xf ResNet50_vd_infer.tar
```
-
用paddle_serving_client把下载的inference模型转换成易于Server部署的模型格式:
```
# 转换ResNet50_vd模型
python3 -m paddle_serving_client.convert --dirname ./ResNet50_vd_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./ResNet50_vd_serving/ \
--serving_client ./ResNet50_vd_client/
```
ResNet50_vd推理模型转换完成后,会在当前文件夹多出
`ResNet50_vd_serving`
和
`ResNet50_vd_client`
的文件夹,具备如下格式:
```
```
|- ResNet50_vd_client/
|- __model__
|- __params__
|- serving_server_conf.prototxt
|- serving_server_conf.stream.prototxt
|- ResNet50_vd_client
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
```
得到模型文件之后,需要修改serving_server_conf.prototxt中的alias名字: 将
`feed_var`
中的
`alias_name`
改为
`image`
, 将
`fetch_var`
中的
`alias_name`
改为
`prediction`
最终在 serving 文件夹下会生成
`ppcls_client_conf`
与
`ppcls_model`
两个文件夹,分别存储了 client 配置、模型参数与结构文件。
**备注**
: Serving为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的alias_name即可,无需修改代码即可完成推理部署。
修改后的serving_server_conf.prototxt如下所示:
```
feed_var {
name: "inputs"
alias_name: "image"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 224
shape: 224
}
fetch_var {
name: "save_infer_model/scale_0.tmp_1"
alias_name: "prediction"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
```
### 3.2 服务部署和请求
paddleserving目录包含了启动pipeline服务和发送预测请求的代码,包括:
```
shell
__init__.py
config.yml
# 启动服务的配置文件
pipeline_http_client.py
# http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py
# rpc方式发送pipeline预测请求的脚本
classification_web_service.py
# 启动pipeline服务端的脚本
```
-
启动服务:
```
shell
# 启动服务,运行日志保存在log.txt
python3 classification_web_service.py &>log.txt &
```
成功启动服务后,log.txt中会打印类似如下日志
![](
../../../deploy/paddleserving/imgs/start_server.png
)
## 4. 服务部署与请求
-
发送请求:
```
shell
# 发送服务请求
python3 pipeline_http_client.py
```
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results.png
)
<a
name=
"图像识别服务部署"
></a>
## 4.图像识别服务部署
使用PaddleServing做服务化部署时,需要将保存的inference模型转换为Serving模型。 下面以PP-ShiTu中的超轻量图像识别模型为例,介绍图像识别服务的部署。
## 4.1 模型转换
-
下载通用检测inference模型和通用识别inference模型
```
cd deploy
# 下载并解压通用识别模型
wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
cd models
tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar
# 下载并解压通用检测模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
```
-
转换识别inference模型为Serving模型:
```
# 转换识别模型
python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
--serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
```
识别推理模型转换完成后,会在当前文件夹多出
`general_PPLCNet_x2_5_lite_v1.0_serving/`
和
`general_PPLCNet_x2_5_lite_v1.0_serving/`
的文件夹。修改
`general_PPLCNet_x2_5_lite_v1.0_serving/`
目录下的serving_server_conf.prototxt中的alias名字: 将
`fetch_var`
中的
`alias_name`
改为
`features`
。
修改后的serving_server_conf.prototxt内容如下:
```
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 224
shape: 224
}
fetch_var {
name: "save_infer_model/scale_0.tmp_1"
alias_name: "features"
is_lod_tensor: true
fetch_type: 1
shape: -1
}
```
-
转换通用检测inference模型为Serving模型:
```
# 转换通用检测模型
python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \
--serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/
```
检测inference模型转换完成后,会在当前文件夹多出
`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/`
和
`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/`
的文件夹。
*
使用下面的方式启动 Serving 服务
。
*
*注意:**
此处不需要修改
`picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/`
目录下的serving_server_conf.prototxt中的alias名字
。
-
下载并解压已经构建后的检索库index
```
cd ../
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar
```
## 4.2 服务部署和请求
**注意:**
识别服务涉及到多个模型,出于性能考虑采用PipeLine部署方式。Pipeline部署方式当前不支持windows平台。
-
进入到工作目录
```
shell
```
shell
python tools/serving/image_service_gpu.py serving/ppcls_model workdir 9292
cd
./deploy/paddleserving/recognition
```
```
paddleserving目录包含启动pipeline服务和发送预测请求的代码,包括:
```
__init__.py
config.yml # 启动服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
recognition_web_service.py # 启动pipeline服务端的脚本
```
-
启动服务:
```
# 启动服务,运行日志保存在log.txt
python3 recognition_web_service.py &>log.txt &
```
成功启动服务后,log.txt中会打印类似如下日志
![](
../../../deploy/paddleserving/imgs/start_server_shitu.png
)
其中
`serving/ppcls_model`
为刚才保存的 Serving 模型地址,
`workdir`
为工作目录,
`9292`
为服务的端口号。
-
发送请求:
```
python3 pipeline_http_client.py
```
成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为:
![](
../../../deploy/paddleserving/imgs/results_shitu.png
)
*
使用下面的脚本向 Serving 服务发送识别请求,并返回结果。
<a
name=
"FAQ"
></a>
## 5.FAQ
**Q1**
: 发送请求后没有结果返回或者提示输出解码报错
**A1**
: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
```
```
python tools/serving/image_http_client.py 9292 ./docs/images/logo.png
unset https_proxy
unset http_proxy
```
```
`9292`
为发送请求的端口号,需要与服务启动时的端口号保持一致,
`./docs/images/logo.png`
为待识别的图像文件。最终返回 Top1 识别结果的类别 ID 以及概率值。
更多的服务部署类型,如
`RPC预测服务`
等,可以参考 Serving 的
[
github 官网
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet
)
*
更多的服务部署类型,如
`RPC预测服务`
等,可以参考 Serving 的 github 官网:
[
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet
](
https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/imagenet
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录