diff --git a/ppcls/modeling/architectures/distilled_vision_transformer.py b/ppcls/modeling/architectures/distilled_vision_transformer.py index f2f3f2abcd83e3667deac380d68c47dfb9ec2292..48fd25050629aab56b7ec59aeef06f77c0da7bea 100644 --- a/ppcls/modeling/architectures/distilled_vision_transformer.py +++ b/ppcls/modeling/architectures/distilled_vision_transformer.py @@ -16,7 +16,6 @@ import paddle import paddle.nn as nn from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_ - __all__ = [ 'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224', 'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224', @@ -26,14 +25,33 @@ __all__ = [ class DistilledVisionTransformer(VisionTransformer): - def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12, - num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5, + def __init__(self, + img_size=224, + patch_size=16, + class_dim=1000, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=False, + norm_layer='nn.LayerNorm', + epsilon=1e-5, **kwargs): - super().__init__(img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth, - num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon, - **kwargs) + super().__init__( + img_size=img_size, + patch_size=patch_size, + class_dim=class_dim, + embed_dim=embed_dim, + depth=depth, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + norm_layer=norm_layer, + epsilon=epsilon, + **kwargs) self.pos_embed = self.create_parameter( - shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_) + shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), + default_initializer=zeros_) self.add_parameter("pos_embed", self.pos_embed) self.dist_token = self.create_parameter( @@ -41,14 +59,15 @@ class DistilledVisionTransformer(VisionTransformer): self.add_parameter("cls_token", self.cls_token) self.head_dist = nn.Linear( - self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity() + self.embed_dim, + self.class_dim) if self.class_dim > 0 else Identity() trunc_normal_(self.dist_token) trunc_normal_(self.pos_embed) self.head_dist.apply(self._init_weights) def forward_features(self, x): - B = x.shape[0] + B = paddle.shape(x)[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand((B, -1, -1)) @@ -73,55 +92,105 @@ class DistilledVisionTransformer(VisionTransformer): def DeiT_tiny_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_small_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_tiny_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=192, + depth=12, + num_heads=3, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_small_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=384, + depth=12, + num_heads=6, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_distilled_patch16_224(**kwargs): model = DistilledVisionTransformer( - patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_patch16_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def DeiT_base_distilled_patch16_384(**kwargs): model = DistilledVisionTransformer( - img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model diff --git a/ppcls/modeling/architectures/vision_transformer.py b/ppcls/modeling/architectures/vision_transformer.py index 8ff59cf1b6ad5a9bc77a0fcf29cf7e16c16600e6..e34403fdd8495850bd97e066a4b5de418f8d0160 100644 --- a/ppcls/modeling/architectures/vision_transformer.py +++ b/ppcls/modeling/architectures/vision_transformer.py @@ -12,20 +12,18 @@ # See the License for the specific language governing permissions and # limitations under the License. +import numpy as np import paddle import paddle.nn as nn from paddle.nn.initializer import TruncatedNormal, Constant - __all__ = [ - "VisionTransformer", - "ViT_small_patch16_224", - "ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384", - "ViT_large_patch16_224", "ViT_large_patch16_384", "ViT_large_patch32_384", - "ViT_huge_patch16_224", "ViT_huge_patch32_384" + "VisionTransformer", "ViT_small_patch16_224", "ViT_base_patch16_224", + "ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224", + "ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_huge_patch16_224", + "ViT_huge_patch32_384" ] - trunc_normal_ = TruncatedNormal(std=.02) zeros_ = Constant(value=0.) ones_ = Constant(value=1.) @@ -43,12 +41,13 @@ def drop_path(x, drop_prob=0., training=False): if drop_prob == 0. or not training: return x keep_prob = paddle.to_tensor(1 - drop_prob) - shape = (x.shape[0],) + (1,) * (x.ndim - 1) + shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1) random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype) - random_tensor = paddle.floor(random_tensor) # binarize + random_tensor = paddle.floor(random_tensor) # binarize output = x.divide(keep_prob) * random_tensor return output + class DropPath(nn.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ @@ -70,7 +69,12 @@ class Identity(nn.Layer): class Mlp(nn.Layer): - def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + def __init__(self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features @@ -89,11 +93,17 @@ class Mlp(nn.Layer): class Attention(nn.Layer): - def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): + def __init__(self, + dim, + num_heads=8, + qkv_bias=False, + qk_scale=None, + attn_drop=0., + proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads - self.scale = qk_scale or head_dim ** -0.5 + self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) @@ -101,8 +111,9 @@ class Attention(nn.Layer): self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): - B, N, C = x.shape - qkv = self.qkv(x).reshape((B, N, 3, self.num_heads, C // + # B= paddle.shape(x)[0] + N, C = x.shape[1:] + qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C // self.num_heads)).transpose((2, 0, 3, 1, 4)) q, k, v = qkv[0], qkv[1], qkv[2] @@ -110,26 +121,42 @@ class Attention(nn.Layer): attn = nn.functional.softmax(attn, axis=-1) attn = self.attn_drop(attn) - x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((B, N, C)) + x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C)) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): - - def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., - drop_path=0., act_layer=nn.GELU, norm_layer='nn.LayerNorm', epsilon=1e-5): + def __init__(self, + dim, + num_heads, + mlp_ratio=4., + qkv_bias=False, + qk_scale=None, + drop=0., + attn_drop=0., + drop_path=0., + act_layer=nn.GELU, + norm_layer='nn.LayerNorm', + epsilon=1e-5): super().__init__() self.norm1 = eval(norm_layer)(dim, epsilon=epsilon) self.attn = Attention( - dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = eval(norm_layer)(dim, epsilon=epsilon) mlp_hidden_dim = int(dim * mlp_ratio) - self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, - act_layer=act_layer, drop=drop) + self.mlp = Mlp(in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) @@ -151,13 +178,13 @@ class PatchEmbed(nn.Layer): self.patch_size = patch_size self.num_patches = num_patches - self.proj = nn.Conv2D(in_chans, embed_dim, - kernel_size=patch_size, stride=patch_size) + self.proj = nn.Conv2D( + in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ - f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + "Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose((0, 2, 1)) return x @@ -167,16 +194,33 @@ class VisionTransformer(nn.Layer): """ Vision Transformer with support for patch input """ - def __init__(self, img_size=224, patch_size=16, in_chans=3, class_dim=1000, embed_dim=768, depth=12, - num_heads=12, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., - drop_path_rate=0., norm_layer='nn.LayerNorm', epsilon=1e-5, **args): + def __init__(self, + img_size=224, + patch_size=16, + in_chans=3, + class_dim=1000, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=False, + qk_scale=None, + drop_rate=0., + attn_drop_rate=0., + drop_path_rate=0., + norm_layer='nn.LayerNorm', + epsilon=1e-5, + **args): super().__init__() self.class_dim = class_dim self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( - img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + img_size=img_size, + patch_size=patch_size, + in_chans=in_chans, + embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.pos_embed = self.create_parameter( @@ -187,23 +231,33 @@ class VisionTransformer(nn.Layer): self.add_parameter("cls_token", self.cls_token) self.pos_drop = nn.Dropout(p=drop_rate) - dpr = [x for x in paddle.linspace(0, drop_path_rate, depth)] + dpr = np.linspace(0, drop_path_rate, depth) self.blocks = nn.LayerList([ Block( - dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, epsilon=epsilon) - for i in range(depth)]) + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + epsilon=epsilon) for i in range(depth) + ]) self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon) # Classifier head - self.head = nn.Linear( - embed_dim, class_dim) if class_dim > 0 else Identity() + self.head = nn.Linear(embed_dim, + class_dim) if class_dim > 0 else Identity() - trunc_normal_(self.pos_embed) - trunc_normal_(self.cls_token) - self.apply(self._init_weights) + # TODO(littletomatodonkey): same init in static mode + if paddle.in_dynamic_mode(): + trunc_normal_(self.pos_embed) + trunc_normal_(self.cls_token) + self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): @@ -215,7 +269,8 @@ class VisionTransformer(nn.Layer): ones_(m.weight) def forward_features(self, x): - B = x.shape[0] + # B = x.shape[0] + B = paddle.shape(x)[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand((B, -1, -1)) x = paddle.concat((cls_tokens, x), axis=1) @@ -234,59 +289,116 @@ class VisionTransformer(nn.Layer): def ViT_small_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, qk_scale=768**-0.5, **kwargs) + patch_size=16, + embed_dim=768, + depth=8, + num_heads=8, + mlp_ratio=3, + qk_scale=768**-0.5, + **kwargs) return model def ViT_base_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_base_patch16_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, - qkv_bias=True, epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_base_patch32_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, - qkv_bias=True, epsilon=1e-6, **kwargs) + img_size=384, + patch_size=32, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_large_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, - epsilon=1e-6, **kwargs) + patch_size=16, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_large_patch16_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, - qkv_bias=True, epsilon=1e-6, **kwargs) + img_size=384, + patch_size=16, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_large_patch32_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, - qkv_bias=True, epsilon=1e-6, **kwargs) + img_size=384, + patch_size=32, + embed_dim=1024, + depth=24, + num_heads=16, + mlp_ratio=4, + qkv_bias=True, + epsilon=1e-6, + **kwargs) return model def ViT_huge_patch16_224(**kwargs): model = VisionTransformer( - patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs) + patch_size=16, + embed_dim=1280, + depth=32, + num_heads=16, + mlp_ratio=4, + **kwargs) return model def ViT_huge_patch32_384(**kwargs): model = VisionTransformer( - img_size=384, patch_size=32, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs) + img_size=384, + patch_size=32, + embed_dim=1280, + depth=32, + num_heads=16, + mlp_ratio=4, + **kwargs) return model