diff --git a/deploy/paddleserving/readme.md b/deploy/paddleserving/readme.md deleted file mode 100644 index 56b8a9bf66371df27656b0d606baaae411147453..0000000000000000000000000000000000000000 --- a/deploy/paddleserving/readme.md +++ /dev/null @@ -1,236 +0,0 @@ -# 模型服务化部署 -- [1. 简介](#1) -- [2. Serving 安装](#2) -- [3. 图像分类服务部署](#3) - - [3.1 模型转换](#3.1) - - [3.2 服务部署和请求](#3.2) -- [4. 图像识别服务部署](#4) - - [4.1 模型转换](#4.1) - - [4.2 服务部署和请求](#4.2) -- [5. FAQ](#5) - - -## 1. 简介 -[Paddle Serving](https://github.com/PaddlePaddle/Serving) 旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。 - -该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。目前只支持 Linux 平台部署,暂不支持 Windows 平台。 - - -## 2. Serving 安装 - -Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。 - -```shell -docker pull paddlepaddle/serving:0.7.0-cuda10.2-cudnn7-devel -nvidia-docker run -p 9292:9292 --name test -dit paddlepaddle/serving:0.7.0-cuda10.2-cudnn7-devel bash -nvidia-docker exec -it test bash -``` - -进入 docker 后,需要安装 Serving 相关的 python 包。 - -```shell -pip3 install paddle-serving-client==0.7.0 -pip3 install paddle-serving-server==0.7.0 # CPU -pip3 install paddle-serving-app==0.7.0 -pip3 install paddle-serving-server-gpu==0.7.0.post102 #GPU with CUDA10.2 + TensorRT6 -# 其他GPU环境需要确认环境再选择执行哪一条 -pip3 install paddle-serving-server-gpu==0.7.0.post101 # GPU with CUDA10.1 + TensorRT6 -pip3 install paddle-serving-server-gpu==0.7.0.post112 # GPU with CUDA11.2 + TensorRT8 -``` - -* 如果安装速度太慢,可以通过 `-i https://pypi.tuna.tsinghua.edu.cn/simple` 更换源,加速安装过程。 -* 其他环境配置安装请参考: [使用Docker安装Paddle Serving](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Install_CN.md) - -* 如果希望部署 CPU 服务,可以安装 serving-server 的 cpu 版本,安装命令如下。 - -```shell -pip install paddle-serving-server -``` - - -## 3. 图像分类服务部署 - -### 3.1 模型转换 -使用 PaddleServing 做服务化部署时,需要将保存的 inference 模型转换为 Serving 模型。下面以经典的 ResNet50_vd 模型为例,介绍如何部署图像分类服务。 -- 进入工作目录: -```shell -cd deploy/paddleserving -``` -- 下载 ResNet50_vd 的 inference 模型: -```shell -# 下载并解压 ResNet50_vd 模型 -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar -``` -- 用 paddle_serving_client 把下载的 inference 模型转换成易于 Server 部署的模型格式: -``` -# 转换 ResNet50_vd 模型 -python3 -m paddle_serving_client.convert --dirname ./ResNet50_vd_infer/ \ - --model_filename inference.pdmodel \ - --params_filename inference.pdiparams \ - --serving_server ./ResNet50_vd_serving/ \ - --serving_client ./ResNet50_vd_client/ -``` -ResNet50_vd 推理模型转换完成后,会在当前文件夹多出 `ResNet50_vd_serving` 和 `ResNet50_vd_client` 的文件夹,具备如下格式: -``` -|- ResNet50_vd_server/ - |- inference.pdiparams - |- inference.pdmodel - |- serving_server_conf.prototxt - |- serving_server_conf.stream.prototxt -|- ResNet50_vd_client - |- serving_client_conf.prototxt - |- serving_client_conf.stream.prototxt -``` -得到模型文件之后,需要修改 `ResNet50_vd_server` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction` - -**备注**: Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。 -修改后的 serving_server_conf.prototxt 如下所示: -``` -feed_var { - name: "inputs" - alias_name: "inputs" - is_lod_tensor: false - feed_type: 1 - shape: 3 - shape: 224 - shape: 224 -} -fetch_var { - name: "save_infer_model/scale_0.tmp_1" - alias_name: "prediction" - is_lod_tensor: false - fetch_type: 1 - shape: 1000 -} -``` - -### 3.2 服务部署和请求 -paddleserving 目录包含了启动 pipeline 服务和发送预测请求的代码,包括: -```shell -__init__.py -config.yml # 启动服务的配置文件 -pipeline_http_client.py # http方式发送pipeline预测请求的脚本 -pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 -classification_web_service.py # 启动pipeline服务端的脚本 -``` - -- 启动服务: -```shell -# 启动服务,运行日志保存在 log.txt -python3 classification_web_service.py &>log.txt & -``` -成功启动服务后,log.txt 中会打印类似如下日志 -![](./imgs/start_server.png) - -- 发送请求: -```shell -# 发送服务请求 -python3 pipeline_http_client.py -``` -成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为: -![](./imgs/results.png) - - -## 4.图像识别服务部署 -使用 PaddleServing 做服务化部署时,需要将保存的 inference 模型转换为 Serving 模型。 下面以 PP-ShiTu 中的超轻量图像识别模型为例,介绍图像识别服务的部署。 - -## 4.1 模型转换 -- 下载通用检测 inference 模型和通用识别 inference 模型 -``` -cd deploy -# 下载并解压通用识别模型 -wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar -cd models -tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar -# 下载并解压通用检测模型 -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar -tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar -``` -- 转换识别 inference 模型为 Serving 模型: -``` -# 转换识别模型 -python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \ - --model_filename inference.pdmodel \ - --params_filename inference.pdiparams \ - --serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \ - --serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/ -``` -识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 的文件夹。修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。 -修改后的 serving_server_conf.prototxt 内容如下: -``` -feed_var { - name: "x" - alias_name: "x" - is_lod_tensor: false - feed_type: 1 - shape: 3 - shape: 224 - shape: 224 -} -fetch_var { - name: "save_infer_model/scale_0.tmp_1" - alias_name: "features" - is_lod_tensor: false - fetch_type: 1 - shape: 512 -} -``` -- 转换通用检测 inference 模型为 Serving 模型: -``` -# 转换通用检测模型 -python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \ - --model_filename inference.pdmodel \ - --params_filename inference.pdiparams \ - --serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \ - --serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/ -``` -检测 inference 模型转换完成后,会在当前文件夹多出 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 和 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/` 的文件夹。 - -**注意:** 此处不需要修改 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字。 - -- 下载并解压已经构建后的检索库 index -``` -cd ../ -wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar -``` - -## 4.2 服务部署和请求 -**注意:** 识别服务涉及到多个模型,出于性能考虑采用 PipeLine 部署方式。Pipeline 部署方式当前不支持 windows 平台。 -- 进入到工作目录 -```shell -cd ./deploy/paddleserving/recognition -``` -paddleserving 目录包含启动 pipeline 服务和发送预测请求的代码,包括: -``` -__init__.py -config.yml # 启动服务的配置文件 -pipeline_http_client.py # http方式发送pipeline预测请求的脚本 -pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 -recognition_web_service.py # 启动pipeline服务端的脚本 -``` -- 启动服务: -``` -# 启动服务,运行日志保存在 log.txt -python3 recognition_web_service.py &>log.txt & -``` -成功启动服务后,log.txt 中会打印类似如下日志 -![](./imgs/start_server_shitu.png) - -- 发送请求: -``` -python3 pipeline_http_client.py -``` -成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为: -![](./imgs/results_shitu.png) - - -## 5.FAQ -**Q1**: 发送请求后没有结果返回或者提示输出解码报错 - -**A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是: -``` -unset https_proxy -unset http_proxy -``` - -更多的服务部署类型,如 `RPC 预测服务` 等,可以参考 Serving 的[github 官网](https://github.com/PaddlePaddle/Serving/tree/v0.7.0/examples) diff --git a/deploy/paddleserving/readme.md b/deploy/paddleserving/readme.md new file mode 120000 index 0000000000000000000000000000000000000000..a2fdec2de5ac3f468ff7ed63b04ebf7bb7b2f574 --- /dev/null +++ b/deploy/paddleserving/readme.md @@ -0,0 +1 @@ +../../docs/zh_CN/inference_deployment/paddle_serving_deploy.md \ No newline at end of file diff --git a/deploy/paddleserving/recognition/run_cpp_serving.sh b/deploy/paddleserving/recognition/run_cpp_serving.sh new file mode 100644 index 0000000000000000000000000000000000000000..affca99c63da9c70fd7c5dd4eb6079fe8ba6b7e6 --- /dev/null +++ b/deploy/paddleserving/recognition/run_cpp_serving.sh @@ -0,0 +1,7 @@ +nohup python3 -m paddle_serving_server.serve \ +--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving \ + --port 9293 >>log_mainbody_detection.txt 1&>2 & + +nohup python3 -m paddle_serving_server.serve \ +--model ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \ +--port 9294 >>log_feature_extraction.txt 1&>2 & diff --git a/deploy/paddleserving/recognition/test_cpp_serving_client.py b/deploy/paddleserving/recognition/test_cpp_serving_client.py new file mode 100644 index 0000000000000000000000000000000000000000..a2bf1ae3e9d0a69628319b9f845a1e6f7701b391 --- /dev/null +++ b/deploy/paddleserving/recognition/test_cpp_serving_client.py @@ -0,0 +1,202 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import numpy as np + +from paddle_serving_client import Client +from paddle_serving_app.reader import * +import cv2 +import faiss +import os +import pickle + + +class MainbodyDetect(): + """ + pp-shitu mainbody detect. + include preprocess, process, postprocess + return detect results + Attention: Postprocess include num limit and box filter; no nms + """ + + def __init__(self): + self.preprocess = DetectionSequential([ + DetectionFile2Image(), DetectionNormalize( + [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True), + DetectionResize( + (640, 640), False, interpolation=2), DetectionTranspose( + (2, 0, 1)) + ]) + + self.client = Client() + self.client.load_client_config( + "../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/serving_client_conf.prototxt" + ) + self.client.connect(['127.0.0.1:9293']) + + self.max_det_result = 5 + self.conf_threshold = 0.2 + + def predict(self, imgpath): + im, im_info = self.preprocess(imgpath) + im_shape = np.array(im.shape[1:]).reshape(-1) + scale_factor = np.array(list(im_info['scale_factor'])).reshape(-1) + + fetch_map = self.client.predict( + feed={ + "image": im, + "im_shape": im_shape, + "scale_factor": scale_factor, + }, + fetch=["save_infer_model/scale_0.tmp_1"], + batch=False) + return self.postprocess(fetch_map, imgpath) + + def postprocess(self, fetch_map, imgpath): + #1. get top max_det_result + det_results = fetch_map["save_infer_model/scale_0.tmp_1"] + if len(det_results) > self.max_det_result: + boxes_reserved = fetch_map[ + "save_infer_model/scale_0.tmp_1"][:self.max_det_result] + else: + boxes_reserved = det_results + + #2. do conf threshold + boxes_list = [] + for i in range(boxes_reserved.shape[0]): + if (boxes_reserved[i, 1]) > self.conf_threshold: + boxes_list.append(boxes_reserved[i, :]) + + #3. add origin image box + origin_img = cv2.imread(imgpath) + boxes_list.append( + np.array([0, 1.0, 0, 0, origin_img.shape[1], origin_img.shape[0]])) + return np.array(boxes_list) + + +class ObjectRecognition(): + """ + pp-shitu object recognion for all objects detected by MainbodyDetect. + include preprocess, process, postprocess + preprocess include preprocess for each image and batching. + Batch process + postprocess include retrieval and nms + """ + + def __init__(self): + self.client = Client() + self.client.load_client_config( + "../../models/general_PPLCNet_x2_5_lite_v1.0_client/serving_client_conf.prototxt" + ) + self.client.connect(["127.0.0.1:9294"]) + + self.seq = Sequential([ + BGR2RGB(), Resize((224, 224)), Div(255), + Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], + False), Transpose((2, 0, 1)) + ]) + + self.searcher, self.id_map = self.init_index() + + self.rec_nms_thresold = 0.05 + self.rec_score_thres = 0.5 + self.feature_normalize = True + self.return_k = 1 + + def init_index(self): + index_dir = "../../drink_dataset_v1.0/index" + assert os.path.exists(os.path.join( + index_dir, "vector.index")), "vector.index not found ..." + assert os.path.exists(os.path.join( + index_dir, "id_map.pkl")), "id_map.pkl not found ... " + + searcher = faiss.read_index(os.path.join(index_dir, "vector.index")) + + with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd: + id_map = pickle.load(fd) + return searcher, id_map + + def predict(self, det_boxes, imgpath): + #1. preprocess + batch_imgs = [] + origin_img = cv2.imread(imgpath) + for i in range(det_boxes.shape[0]): + box = det_boxes[i] + x1, y1, x2, y2 = [int(x) for x in box[2:]] + cropped_img = origin_img[y1:y2, x1:x2, :].copy() + tmp = self.seq(cropped_img) + batch_imgs.append(tmp) + batch_imgs = np.array(batch_imgs) + + #2. process + fetch_map = self.client.predict( + feed={"x": batch_imgs}, fetch=["features"], batch=True) + batch_features = fetch_map["features"] + + #3. postprocess + if self.feature_normalize: + feas_norm = np.sqrt( + np.sum(np.square(batch_features), axis=1, keepdims=True)) + batch_features = np.divide(batch_features, feas_norm) + scores, docs = self.searcher.search(batch_features, self.return_k) + + results = [] + for i in range(scores.shape[0]): + pred = {} + if scores[i][0] >= self.rec_score_thres: + pred["bbox"] = [int(x) for x in det_boxes[i, 2:]] + pred["rec_docs"] = self.id_map[docs[i][0]].split()[1] + pred["rec_scores"] = scores[i][0] + results.append(pred) + return self.nms_to_rec_results(results) + + def nms_to_rec_results(self, results): + filtered_results = [] + x1 = np.array([r["bbox"][0] for r in results]).astype("float32") + y1 = np.array([r["bbox"][1] for r in results]).astype("float32") + x2 = np.array([r["bbox"][2] for r in results]).astype("float32") + y2 = np.array([r["bbox"][3] for r in results]).astype("float32") + scores = np.array([r["rec_scores"] for r in results]) + + areas = (x2 - x1 + 1) * (y2 - y1 + 1) + order = scores.argsort()[::-1] + while order.size > 0: + i = order[0] + xx1 = np.maximum(x1[i], x1[order[1:]]) + yy1 = np.maximum(y1[i], y1[order[1:]]) + xx2 = np.minimum(x2[i], x2[order[1:]]) + yy2 = np.minimum(y2[i], y2[order[1:]]) + + w = np.maximum(0.0, xx2 - xx1 + 1) + h = np.maximum(0.0, yy2 - yy1 + 1) + inter = w * h + ovr = inter / (areas[i] + areas[order[1:]] - inter) + inds = np.where(ovr <= self.rec_nms_thresold)[0] + order = order[inds + 1] + filtered_results.append(results[i]) + return filtered_results + + +if __name__ == "__main__": + det = MainbodyDetect() + rec = ObjectRecognition() + + #1. get det_results + imgpath = "../../drink_dataset_v1.0/test_images/001.jpeg" + det_results = det.predict(imgpath) + + #2. get rec_results + rec_results = rec.predict(det_results, imgpath) + print(rec_results) diff --git a/deploy/paddleserving/run_cpp_serving.sh b/deploy/paddleserving/run_cpp_serving.sh new file mode 100644 index 0000000000000000000000000000000000000000..05794b7d953e578880dcc9cb87e91be0c031a415 --- /dev/null +++ b/deploy/paddleserving/run_cpp_serving.sh @@ -0,0 +1,2 @@ +#run cls server: +nohup python3 -m paddle_serving_server.serve --model ResNet50_vd_serving --port 9292 & diff --git a/deploy/paddleserving/test_cpp_serving_cient.py b/deploy/paddleserving/test_cpp_serving_cient.py new file mode 100644 index 0000000000000000000000000000000000000000..50794b363767c8236ccca1001a441b535a9f9db3 --- /dev/null +++ b/deploy/paddleserving/test_cpp_serving_cient.py @@ -0,0 +1,52 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +from paddle_serving_client import Client + +#app +from paddle_serving_app.reader import Sequential, URL2Image, Resize +from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize +import time + +client = Client() +client.load_client_config("./ResNet50_vd_serving/serving_server_conf.prototxt") +client.connect(["127.0.0.1:9292"]) + +label_dict = {} +label_idx = 0 +with open("imagenet.label") as fin: + for line in fin: + label_dict[label_idx] = line.strip() + label_idx += 1 + +#preprocess +seq = Sequential([ + URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)), + Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True) +]) + +start = time.time() +image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg" +for i in range(1): + img = seq(image_file) + fetch_map = client.predict( + feed={"inputs": img}, fetch=["prediction"], batch=False) + + prob = max(fetch_map["prediction"][0]) + label = label_dict[fetch_map["prediction"][0].tolist().index(prob)].strip( + ).replace(",", "") + print("prediction: {}, probability: {}".format(label, prob)) +end = time.time() +print(end - start) diff --git a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md index 99c3e45b2a8f513a16e6d1b35426d8da326450f4..03df4c4f93bd7124ea09bc85d07705fb88ad1ac5 100644 --- a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md +++ b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md @@ -6,9 +6,13 @@ - [3. 图像分类服务部署](#3) - [3.1 模型转换](#3.1) - [3.2 服务部署和请求](#3.2) + - [3.2.1 Python Serving](#3.2.1) + - [3.2.2 C++ Serving](#3.2.2) - [4. 图像识别服务部署](#4) - [4.1 模型转换](#4.1) - [4.2 服务部署和请求](#4.2) + - [4.2.1 Python Serving](#4.2.1) + - [4.2.2 C++ Serving](#4.2.2) - [5. FAQ](#5) @@ -90,7 +94,7 @@ ResNet50_vd 推理模型转换完成后,会在当前文件夹多出 `ResNet50_ |- serving_client_conf.prototxt |- serving_client_conf.stream.prototxt ``` -得到模型文件之后,需要修改 `ResNet50_vd_server` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction` +得到模型文件之后,需要分别修改 `ResNet50_vd_server` 和 `ResNet50_vd_client` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction` **备注**: Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。 修改后的 serving_server_conf.prototxt 如下所示: @@ -114,30 +118,51 @@ fetch_var { ``` ### 3.2 服务部署和请求 -paddleserving 目录包含了启动 pipeline 服务和发送预测请求的代码,包括: +paddleserving 目录包含了启动 pipeline 服务、C++ serving服务和发送预测请求的代码,包括: ```shell __init__.py -config.yml # 启动服务的配置文件 +config.yml # 启动pipeline服务的配置文件 pipeline_http_client.py # http方式发送pipeline预测请求的脚本 pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 classification_web_service.py # 启动pipeline服务端的脚本 +run_cpp_serving.sh # 启动C++ Serving部署的脚本 +test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本 ``` - + +#### 3.2.1 Python Serving - 启动服务: ```shell # 启动服务,运行日志保存在 log.txt python3 classification_web_service.py &>log.txt & ``` -成功启动服务后,log.txt 中会打印类似如下日志 -![](../../../deploy/paddleserving/imgs/start_server.png) - 发送请求: ```shell # 发送服务请求 python3 pipeline_http_client.py ``` -成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为: -![](../../../deploy/paddleserving/imgs/results.png) +成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下: +``` +{'err_no': 0, 'err_msg': '', 'key': ['label', 'prob'], 'value': ["['daisy']", '[0.9341402053833008]'], 'tensors': []} +``` + + +#### 3.2.2 C++ Serving +- 启动服务: +```shell +# 启动服务, 服务在后台运行,运行日志保存在 nohup.txt +sh run_cpp_serving.sh +``` + +- 发送请求: +```shell +# 发送服务请求 +python3 test_cpp_serving_client.py +``` +成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下: +``` +prediction: daisy, probability: 0.9341399073600769 +``` ## 4.图像识别服务部署 @@ -164,7 +189,7 @@ python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v --serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \ --serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/ ``` -识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 的文件夹。修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。 +识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_serving/` 的文件夹。分别修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。 修改后的 serving_server_conf.prototxt 内容如下: ``` feed_var { @@ -209,28 +234,52 @@ wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_da ```shell cd ./deploy/paddleserving/recognition ``` -paddleserving 目录包含启动 pipeline 服务和发送预测请求的代码,包括: +paddleserving 目录包含启动 Python Pipeline 服务、C++ Serving 服务和发送预测请求的代码,包括: ``` __init__.py -config.yml # 启动服务的配置文件 +config.yml # 启动python pipeline服务的配置文件 pipeline_http_client.py # http方式发送pipeline预测请求的脚本 pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本 recognition_web_service.py # 启动pipeline服务端的脚本 +run_cpp_serving.sh # 启动C++ Pipeline Serving部署的脚本 +test_cpp_serving_client.py # rpc方式发送C++ Pipeline serving预测请求的脚本 ``` + + +#### 4.2.1 Python Serving - 启动服务: ``` # 启动服务,运行日志保存在 log.txt python3 recognition_web_service.py &>log.txt & ``` -成功启动服务后,log.txt 中会打印类似如下日志 -![](../../../deploy/paddleserving/imgs/start_server_shitu.png) - 发送请求: ``` python3 pipeline_http_client.py ``` -成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为: -![](../../../deploy/paddleserving/imgs/results_shitu.png) +成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下: +``` +{'err_no': 0, 'err_msg': '', 'key': ['result'], 'value': ["[{'bbox': [345, 95, 524, 576], 'rec_docs': '红牛-强化型', 'rec_scores': 0.79903316}]"], 'tensors': []} +``` + + +#### 4.2.2 C++ Serving +- 启动服务: +```shell +# 启动服务: 此处会在后台同时启动主体检测和特征提取服务,端口号分别为9293和9294; +# 运行日志分别保存在 log_mainbody_detection.txt 和 log_feature_extraction.txt中 +sh run_cpp_serving.sh +``` + +- 发送请求: +```shell +# 发送服务请求 +python3 test_cpp_serving_client.py +``` +成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下所示: +``` +[{'bbox': [345, 95, 524, 586], 'rec_docs': '红牛-强化型', 'rec_scores': 0.8016462}] +``` ## 5.FAQ