diff --git a/deploy/paddleserving/readme.md b/deploy/paddleserving/readme.md
deleted file mode 100644
index 56b8a9bf66371df27656b0d606baaae411147453..0000000000000000000000000000000000000000
--- a/deploy/paddleserving/readme.md
+++ /dev/null
@@ -1,236 +0,0 @@
-# 模型服务化部署
-- [1. 简介](#1)
-- [2. Serving 安装](#2)
-- [3. 图像分类服务部署](#3)
- - [3.1 模型转换](#3.1)
- - [3.2 服务部署和请求](#3.2)
-- [4. 图像识别服务部署](#4)
- - [4.1 模型转换](#4.1)
- - [4.2 服务部署和请求](#4.2)
-- [5. FAQ](#5)
-
-
-## 1. 简介
-[Paddle Serving](https://github.com/PaddlePaddle/Serving) 旨在帮助深度学习开发者轻松部署在线预测服务,支持一键部署工业级的服务能力、客户端和服务端之间高并发和高效通信、并支持多种编程语言开发客户端。
-
-该部分以 HTTP 预测服务部署为例,介绍怎样在 PaddleClas 中使用 PaddleServing 部署模型服务。目前只支持 Linux 平台部署,暂不支持 Windows 平台。
-
-
-## 2. Serving 安装
-
-Serving 官网推荐使用 docker 安装并部署 Serving 环境。首先需要拉取 docker 环境并创建基于 Serving 的 docker。
-
-```shell
-docker pull paddlepaddle/serving:0.7.0-cuda10.2-cudnn7-devel
-nvidia-docker run -p 9292:9292 --name test -dit paddlepaddle/serving:0.7.0-cuda10.2-cudnn7-devel bash
-nvidia-docker exec -it test bash
-```
-
-进入 docker 后,需要安装 Serving 相关的 python 包。
-
-```shell
-pip3 install paddle-serving-client==0.7.0
-pip3 install paddle-serving-server==0.7.0 # CPU
-pip3 install paddle-serving-app==0.7.0
-pip3 install paddle-serving-server-gpu==0.7.0.post102 #GPU with CUDA10.2 + TensorRT6
-# 其他GPU环境需要确认环境再选择执行哪一条
-pip3 install paddle-serving-server-gpu==0.7.0.post101 # GPU with CUDA10.1 + TensorRT6
-pip3 install paddle-serving-server-gpu==0.7.0.post112 # GPU with CUDA11.2 + TensorRT8
-```
-
-* 如果安装速度太慢,可以通过 `-i https://pypi.tuna.tsinghua.edu.cn/simple` 更换源,加速安装过程。
-* 其他环境配置安装请参考: [使用Docker安装Paddle Serving](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Install_CN.md)
-
-* 如果希望部署 CPU 服务,可以安装 serving-server 的 cpu 版本,安装命令如下。
-
-```shell
-pip install paddle-serving-server
-```
-
-
-## 3. 图像分类服务部署
-
-### 3.1 模型转换
-使用 PaddleServing 做服务化部署时,需要将保存的 inference 模型转换为 Serving 模型。下面以经典的 ResNet50_vd 模型为例,介绍如何部署图像分类服务。
-- 进入工作目录:
-```shell
-cd deploy/paddleserving
-```
-- 下载 ResNet50_vd 的 inference 模型:
-```shell
-# 下载并解压 ResNet50_vd 模型
-wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar && tar xf ResNet50_vd_infer.tar
-```
-- 用 paddle_serving_client 把下载的 inference 模型转换成易于 Server 部署的模型格式:
-```
-# 转换 ResNet50_vd 模型
-python3 -m paddle_serving_client.convert --dirname ./ResNet50_vd_infer/ \
- --model_filename inference.pdmodel \
- --params_filename inference.pdiparams \
- --serving_server ./ResNet50_vd_serving/ \
- --serving_client ./ResNet50_vd_client/
-```
-ResNet50_vd 推理模型转换完成后,会在当前文件夹多出 `ResNet50_vd_serving` 和 `ResNet50_vd_client` 的文件夹,具备如下格式:
-```
-|- ResNet50_vd_server/
- |- inference.pdiparams
- |- inference.pdmodel
- |- serving_server_conf.prototxt
- |- serving_server_conf.stream.prototxt
-|- ResNet50_vd_client
- |- serving_client_conf.prototxt
- |- serving_client_conf.stream.prototxt
-```
-得到模型文件之后,需要修改 `ResNet50_vd_server` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction`
-
-**备注**: Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。
-修改后的 serving_server_conf.prototxt 如下所示:
-```
-feed_var {
- name: "inputs"
- alias_name: "inputs"
- is_lod_tensor: false
- feed_type: 1
- shape: 3
- shape: 224
- shape: 224
-}
-fetch_var {
- name: "save_infer_model/scale_0.tmp_1"
- alias_name: "prediction"
- is_lod_tensor: false
- fetch_type: 1
- shape: 1000
-}
-```
-
-### 3.2 服务部署和请求
-paddleserving 目录包含了启动 pipeline 服务和发送预测请求的代码,包括:
-```shell
-__init__.py
-config.yml # 启动服务的配置文件
-pipeline_http_client.py # http方式发送pipeline预测请求的脚本
-pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
-classification_web_service.py # 启动pipeline服务端的脚本
-```
-
-- 启动服务:
-```shell
-# 启动服务,运行日志保存在 log.txt
-python3 classification_web_service.py &>log.txt &
-```
-成功启动服务后,log.txt 中会打印类似如下日志
-
-
-- 发送请求:
-```shell
-# 发送服务请求
-python3 pipeline_http_client.py
-```
-成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
-
-
-
-## 4.图像识别服务部署
-使用 PaddleServing 做服务化部署时,需要将保存的 inference 模型转换为 Serving 模型。 下面以 PP-ShiTu 中的超轻量图像识别模型为例,介绍图像识别服务的部署。
-
-## 4.1 模型转换
-- 下载通用检测 inference 模型和通用识别 inference 模型
-```
-cd deploy
-# 下载并解压通用识别模型
-wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar
-cd models
-tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar
-# 下载并解压通用检测模型
-wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
-tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
-```
-- 转换识别 inference 模型为 Serving 模型:
-```
-# 转换识别模型
-python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v1.0_infer/ \
- --model_filename inference.pdmodel \
- --params_filename inference.pdiparams \
- --serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
- --serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
-```
-识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 的文件夹。修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。
-修改后的 serving_server_conf.prototxt 内容如下:
-```
-feed_var {
- name: "x"
- alias_name: "x"
- is_lod_tensor: false
- feed_type: 1
- shape: 3
- shape: 224
- shape: 224
-}
-fetch_var {
- name: "save_infer_model/scale_0.tmp_1"
- alias_name: "features"
- is_lod_tensor: false
- fetch_type: 1
- shape: 512
-}
-```
-- 转换通用检测 inference 模型为 Serving 模型:
-```
-# 转换通用检测模型
-python3 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \
- --model_filename inference.pdmodel \
- --params_filename inference.pdiparams \
- --serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \
- --serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/
-```
-检测 inference 模型转换完成后,会在当前文件夹多出 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 和 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/` 的文件夹。
-
-**注意:** 此处不需要修改 `picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字。
-
-- 下载并解压已经构建后的检索库 index
-```
-cd ../
-wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar && tar -xf drink_dataset_v1.0.tar
-```
-
-## 4.2 服务部署和请求
-**注意:** 识别服务涉及到多个模型,出于性能考虑采用 PipeLine 部署方式。Pipeline 部署方式当前不支持 windows 平台。
-- 进入到工作目录
-```shell
-cd ./deploy/paddleserving/recognition
-```
-paddleserving 目录包含启动 pipeline 服务和发送预测请求的代码,包括:
-```
-__init__.py
-config.yml # 启动服务的配置文件
-pipeline_http_client.py # http方式发送pipeline预测请求的脚本
-pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
-recognition_web_service.py # 启动pipeline服务端的脚本
-```
-- 启动服务:
-```
-# 启动服务,运行日志保存在 log.txt
-python3 recognition_web_service.py &>log.txt &
-```
-成功启动服务后,log.txt 中会打印类似如下日志
-
-
-- 发送请求:
-```
-python3 pipeline_http_client.py
-```
-成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
-
-
-
-## 5.FAQ
-**Q1**: 发送请求后没有结果返回或者提示输出解码报错
-
-**A1**: 启动服务和发送请求时不要设置代理,可以在启动服务前和发送请求前关闭代理,关闭代理的命令是:
-```
-unset https_proxy
-unset http_proxy
-```
-
-更多的服务部署类型,如 `RPC 预测服务` 等,可以参考 Serving 的[github 官网](https://github.com/PaddlePaddle/Serving/tree/v0.7.0/examples)
diff --git a/deploy/paddleserving/readme.md b/deploy/paddleserving/readme.md
new file mode 120000
index 0000000000000000000000000000000000000000..a2fdec2de5ac3f468ff7ed63b04ebf7bb7b2f574
--- /dev/null
+++ b/deploy/paddleserving/readme.md
@@ -0,0 +1 @@
+../../docs/zh_CN/inference_deployment/paddle_serving_deploy.md
\ No newline at end of file
diff --git a/deploy/paddleserving/recognition/run_cpp_serving.sh b/deploy/paddleserving/recognition/run_cpp_serving.sh
new file mode 100644
index 0000000000000000000000000000000000000000..affca99c63da9c70fd7c5dd4eb6079fe8ba6b7e6
--- /dev/null
+++ b/deploy/paddleserving/recognition/run_cpp_serving.sh
@@ -0,0 +1,7 @@
+nohup python3 -m paddle_serving_server.serve \
+--model ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving \
+ --port 9293 >>log_mainbody_detection.txt 1&>2 &
+
+nohup python3 -m paddle_serving_server.serve \
+--model ../../models/general_PPLCNet_x2_5_lite_v1.0_serving \
+--port 9294 >>log_feature_extraction.txt 1&>2 &
diff --git a/deploy/paddleserving/recognition/test_cpp_serving_client.py b/deploy/paddleserving/recognition/test_cpp_serving_client.py
new file mode 100644
index 0000000000000000000000000000000000000000..a2bf1ae3e9d0a69628319b9f845a1e6f7701b391
--- /dev/null
+++ b/deploy/paddleserving/recognition/test_cpp_serving_client.py
@@ -0,0 +1,202 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import sys
+import numpy as np
+
+from paddle_serving_client import Client
+from paddle_serving_app.reader import *
+import cv2
+import faiss
+import os
+import pickle
+
+
+class MainbodyDetect():
+ """
+ pp-shitu mainbody detect.
+ include preprocess, process, postprocess
+ return detect results
+ Attention: Postprocess include num limit and box filter; no nms
+ """
+
+ def __init__(self):
+ self.preprocess = DetectionSequential([
+ DetectionFile2Image(), DetectionNormalize(
+ [0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True),
+ DetectionResize(
+ (640, 640), False, interpolation=2), DetectionTranspose(
+ (2, 0, 1))
+ ])
+
+ self.client = Client()
+ self.client.load_client_config(
+ "../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/serving_client_conf.prototxt"
+ )
+ self.client.connect(['127.0.0.1:9293'])
+
+ self.max_det_result = 5
+ self.conf_threshold = 0.2
+
+ def predict(self, imgpath):
+ im, im_info = self.preprocess(imgpath)
+ im_shape = np.array(im.shape[1:]).reshape(-1)
+ scale_factor = np.array(list(im_info['scale_factor'])).reshape(-1)
+
+ fetch_map = self.client.predict(
+ feed={
+ "image": im,
+ "im_shape": im_shape,
+ "scale_factor": scale_factor,
+ },
+ fetch=["save_infer_model/scale_0.tmp_1"],
+ batch=False)
+ return self.postprocess(fetch_map, imgpath)
+
+ def postprocess(self, fetch_map, imgpath):
+ #1. get top max_det_result
+ det_results = fetch_map["save_infer_model/scale_0.tmp_1"]
+ if len(det_results) > self.max_det_result:
+ boxes_reserved = fetch_map[
+ "save_infer_model/scale_0.tmp_1"][:self.max_det_result]
+ else:
+ boxes_reserved = det_results
+
+ #2. do conf threshold
+ boxes_list = []
+ for i in range(boxes_reserved.shape[0]):
+ if (boxes_reserved[i, 1]) > self.conf_threshold:
+ boxes_list.append(boxes_reserved[i, :])
+
+ #3. add origin image box
+ origin_img = cv2.imread(imgpath)
+ boxes_list.append(
+ np.array([0, 1.0, 0, 0, origin_img.shape[1], origin_img.shape[0]]))
+ return np.array(boxes_list)
+
+
+class ObjectRecognition():
+ """
+ pp-shitu object recognion for all objects detected by MainbodyDetect.
+ include preprocess, process, postprocess
+ preprocess include preprocess for each image and batching.
+ Batch process
+ postprocess include retrieval and nms
+ """
+
+ def __init__(self):
+ self.client = Client()
+ self.client.load_client_config(
+ "../../models/general_PPLCNet_x2_5_lite_v1.0_client/serving_client_conf.prototxt"
+ )
+ self.client.connect(["127.0.0.1:9294"])
+
+ self.seq = Sequential([
+ BGR2RGB(), Resize((224, 224)), Div(255),
+ Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
+ False), Transpose((2, 0, 1))
+ ])
+
+ self.searcher, self.id_map = self.init_index()
+
+ self.rec_nms_thresold = 0.05
+ self.rec_score_thres = 0.5
+ self.feature_normalize = True
+ self.return_k = 1
+
+ def init_index(self):
+ index_dir = "../../drink_dataset_v1.0/index"
+ assert os.path.exists(os.path.join(
+ index_dir, "vector.index")), "vector.index not found ..."
+ assert os.path.exists(os.path.join(
+ index_dir, "id_map.pkl")), "id_map.pkl not found ... "
+
+ searcher = faiss.read_index(os.path.join(index_dir, "vector.index"))
+
+ with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
+ id_map = pickle.load(fd)
+ return searcher, id_map
+
+ def predict(self, det_boxes, imgpath):
+ #1. preprocess
+ batch_imgs = []
+ origin_img = cv2.imread(imgpath)
+ for i in range(det_boxes.shape[0]):
+ box = det_boxes[i]
+ x1, y1, x2, y2 = [int(x) for x in box[2:]]
+ cropped_img = origin_img[y1:y2, x1:x2, :].copy()
+ tmp = self.seq(cropped_img)
+ batch_imgs.append(tmp)
+ batch_imgs = np.array(batch_imgs)
+
+ #2. process
+ fetch_map = self.client.predict(
+ feed={"x": batch_imgs}, fetch=["features"], batch=True)
+ batch_features = fetch_map["features"]
+
+ #3. postprocess
+ if self.feature_normalize:
+ feas_norm = np.sqrt(
+ np.sum(np.square(batch_features), axis=1, keepdims=True))
+ batch_features = np.divide(batch_features, feas_norm)
+ scores, docs = self.searcher.search(batch_features, self.return_k)
+
+ results = []
+ for i in range(scores.shape[0]):
+ pred = {}
+ if scores[i][0] >= self.rec_score_thres:
+ pred["bbox"] = [int(x) for x in det_boxes[i, 2:]]
+ pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
+ pred["rec_scores"] = scores[i][0]
+ results.append(pred)
+ return self.nms_to_rec_results(results)
+
+ def nms_to_rec_results(self, results):
+ filtered_results = []
+ x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
+ y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
+ x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
+ y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
+ scores = np.array([r["rec_scores"] for r in results])
+
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
+ order = scores.argsort()[::-1]
+ while order.size > 0:
+ i = order[0]
+ xx1 = np.maximum(x1[i], x1[order[1:]])
+ yy1 = np.maximum(y1[i], y1[order[1:]])
+ xx2 = np.minimum(x2[i], x2[order[1:]])
+ yy2 = np.minimum(y2[i], y2[order[1:]])
+
+ w = np.maximum(0.0, xx2 - xx1 + 1)
+ h = np.maximum(0.0, yy2 - yy1 + 1)
+ inter = w * h
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
+ inds = np.where(ovr <= self.rec_nms_thresold)[0]
+ order = order[inds + 1]
+ filtered_results.append(results[i])
+ return filtered_results
+
+
+if __name__ == "__main__":
+ det = MainbodyDetect()
+ rec = ObjectRecognition()
+
+ #1. get det_results
+ imgpath = "../../drink_dataset_v1.0/test_images/001.jpeg"
+ det_results = det.predict(imgpath)
+
+ #2. get rec_results
+ rec_results = rec.predict(det_results, imgpath)
+ print(rec_results)
diff --git a/deploy/paddleserving/run_cpp_serving.sh b/deploy/paddleserving/run_cpp_serving.sh
new file mode 100644
index 0000000000000000000000000000000000000000..05794b7d953e578880dcc9cb87e91be0c031a415
--- /dev/null
+++ b/deploy/paddleserving/run_cpp_serving.sh
@@ -0,0 +1,2 @@
+#run cls server:
+nohup python3 -m paddle_serving_server.serve --model ResNet50_vd_serving --port 9292 &
diff --git a/deploy/paddleserving/test_cpp_serving_cient.py b/deploy/paddleserving/test_cpp_serving_cient.py
new file mode 100644
index 0000000000000000000000000000000000000000..50794b363767c8236ccca1001a441b535a9f9db3
--- /dev/null
+++ b/deploy/paddleserving/test_cpp_serving_cient.py
@@ -0,0 +1,52 @@
+# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import sys
+from paddle_serving_client import Client
+
+#app
+from paddle_serving_app.reader import Sequential, URL2Image, Resize
+from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
+import time
+
+client = Client()
+client.load_client_config("./ResNet50_vd_serving/serving_server_conf.prototxt")
+client.connect(["127.0.0.1:9292"])
+
+label_dict = {}
+label_idx = 0
+with open("imagenet.label") as fin:
+ for line in fin:
+ label_dict[label_idx] = line.strip()
+ label_idx += 1
+
+#preprocess
+seq = Sequential([
+ URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
+ Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
+])
+
+start = time.time()
+image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
+for i in range(1):
+ img = seq(image_file)
+ fetch_map = client.predict(
+ feed={"inputs": img}, fetch=["prediction"], batch=False)
+
+ prob = max(fetch_map["prediction"][0])
+ label = label_dict[fetch_map["prediction"][0].tolist().index(prob)].strip(
+ ).replace(",", "")
+ print("prediction: {}, probability: {}".format(label, prob))
+end = time.time()
+print(end - start)
diff --git a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
index 99c3e45b2a8f513a16e6d1b35426d8da326450f4..03df4c4f93bd7124ea09bc85d07705fb88ad1ac5 100644
--- a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
+++ b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md
@@ -6,9 +6,13 @@
- [3. 图像分类服务部署](#3)
- [3.1 模型转换](#3.1)
- [3.2 服务部署和请求](#3.2)
+ - [3.2.1 Python Serving](#3.2.1)
+ - [3.2.2 C++ Serving](#3.2.2)
- [4. 图像识别服务部署](#4)
- [4.1 模型转换](#4.1)
- [4.2 服务部署和请求](#4.2)
+ - [4.2.1 Python Serving](#4.2.1)
+ - [4.2.2 C++ Serving](#4.2.2)
- [5. FAQ](#5)
@@ -90,7 +94,7 @@ ResNet50_vd 推理模型转换完成后,会在当前文件夹多出 `ResNet50_
|- serving_client_conf.prototxt
|- serving_client_conf.stream.prototxt
```
-得到模型文件之后,需要修改 `ResNet50_vd_server` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction`
+得到模型文件之后,需要分别修改 `ResNet50_vd_server` 和 `ResNet50_vd_client` 下文件 `serving_server_conf.prototxt` 中的 alias 名字:将 `fetch_var` 中的 `alias_name` 改为 `prediction`
**备注**: Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。这样,不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。
修改后的 serving_server_conf.prototxt 如下所示:
@@ -114,30 +118,51 @@ fetch_var {
```
### 3.2 服务部署和请求
-paddleserving 目录包含了启动 pipeline 服务和发送预测请求的代码,包括:
+paddleserving 目录包含了启动 pipeline 服务、C++ serving服务和发送预测请求的代码,包括:
```shell
__init__.py
-config.yml # 启动服务的配置文件
+config.yml # 启动pipeline服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
classification_web_service.py # 启动pipeline服务端的脚本
+run_cpp_serving.sh # 启动C++ Serving部署的脚本
+test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
```
-
+
+#### 3.2.1 Python Serving
- 启动服务:
```shell
# 启动服务,运行日志保存在 log.txt
python3 classification_web_service.py &>log.txt &
```
-成功启动服务后,log.txt 中会打印类似如下日志
-
- 发送请求:
```shell
# 发送服务请求
python3 pipeline_http_client.py
```
-成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
-
+成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下:
+```
+{'err_no': 0, 'err_msg': '', 'key': ['label', 'prob'], 'value': ["['daisy']", '[0.9341402053833008]'], 'tensors': []}
+```
+
+
+#### 3.2.2 C++ Serving
+- 启动服务:
+```shell
+# 启动服务, 服务在后台运行,运行日志保存在 nohup.txt
+sh run_cpp_serving.sh
+```
+
+- 发送请求:
+```shell
+# 发送服务请求
+python3 test_cpp_serving_client.py
+```
+成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下:
+```
+prediction: daisy, probability: 0.9341399073600769
+```
## 4.图像识别服务部署
@@ -164,7 +189,7 @@ python3 -m paddle_serving_client.convert --dirname ./general_PPLCNet_x2_5_lite_v
--serving_server ./general_PPLCNet_x2_5_lite_v1.0_serving/ \
--serving_client ./general_PPLCNet_x2_5_lite_v1.0_client/
```
-识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 的文件夹。修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。
+识别推理模型转换完成后,会在当前文件夹多出 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_serving/` 的文件夹。分别修改 `general_PPLCNet_x2_5_lite_v1.0_serving/` 和 `general_PPLCNet_x2_5_lite_v1.0_client/` 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 `fetch_var` 中的 `alias_name` 改为 `features`。
修改后的 serving_server_conf.prototxt 内容如下:
```
feed_var {
@@ -209,28 +234,52 @@ wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_da
```shell
cd ./deploy/paddleserving/recognition
```
-paddleserving 目录包含启动 pipeline 服务和发送预测请求的代码,包括:
+paddleserving 目录包含启动 Python Pipeline 服务、C++ Serving 服务和发送预测请求的代码,包括:
```
__init__.py
-config.yml # 启动服务的配置文件
+config.yml # 启动python pipeline服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
recognition_web_service.py # 启动pipeline服务端的脚本
+run_cpp_serving.sh # 启动C++ Pipeline Serving部署的脚本
+test_cpp_serving_client.py # rpc方式发送C++ Pipeline serving预测请求的脚本
```
+
+
+#### 4.2.1 Python Serving
- 启动服务:
```
# 启动服务,运行日志保存在 log.txt
python3 recognition_web_service.py &>log.txt &
```
-成功启动服务后,log.txt 中会打印类似如下日志
-
- 发送请求:
```
python3 pipeline_http_client.py
```
-成功运行后,模型预测的结果会打印在 cmd 窗口中,结果示例为:
-
+成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下:
+```
+{'err_no': 0, 'err_msg': '', 'key': ['result'], 'value': ["[{'bbox': [345, 95, 524, 576], 'rec_docs': '红牛-强化型', 'rec_scores': 0.79903316}]"], 'tensors': []}
+```
+
+
+#### 4.2.2 C++ Serving
+- 启动服务:
+```shell
+# 启动服务: 此处会在后台同时启动主体检测和特征提取服务,端口号分别为9293和9294;
+# 运行日志分别保存在 log_mainbody_detection.txt 和 log_feature_extraction.txt中
+sh run_cpp_serving.sh
+```
+
+- 发送请求:
+```shell
+# 发送服务请求
+python3 test_cpp_serving_client.py
+```
+成功运行后,模型预测的结果会打印在 cmd 窗口中,结果如下所示:
+```
+[{'bbox': [345, 95, 524, 586], 'rec_docs': '红牛-强化型', 'rec_scores': 0.8016462}]
+```
## 5.FAQ