提交 0a0d5bc0 编写于 作者: littletomatodonkey's avatar littletomatodonkey

add support for windows and cpu

上级 507c74a7
......@@ -15,15 +15,17 @@
import numpy as np
import imghdr
import os
import sys
import signal
from paddle import fluid
from paddle.fluid.io import multiprocess_reader
from . import imaug
from .imaug import transform
from ppcls.utils import logger
trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 0))
trainer_id = int(os.environ.get("PADDLE_TRAINER_ID", 0))
......@@ -139,8 +141,9 @@ def get_file_list(params):
# use only partial data for each trainer in distributed training
if params['mode'] == 'train':
img_per_trainer = len(full_lines) // trainers_num
full_lines = full_lines[trainer_id::trainers_num][:img_per_trainer]
real_trainer_num = max(trainers_num, 1)
img_per_trainer = len(full_lines) // real_trainer_num
full_lines = full_lines[trainer_id::real_trainer_num][:img_per_trainer]
return full_lines
......@@ -165,7 +168,7 @@ def create_operators(params):
return ops
def partial_reader(params, full_lines, part_id=0, part_num=1):
def partial_reader(params, full_lines, part_id=0, part_num=1, batch_size=1):
"""
create a reader with partial data
......@@ -174,13 +177,13 @@ def partial_reader(params, full_lines, part_id=0, part_num=1):
full_lines: label list
part_id(int): part index of the current partial data
part_num(int): part num of the dataset
batch_size(int): batch size for one trainer
"""
assert part_id < part_num, ("part_num: {} should be larger "
"than part_id: {}".format(part_num, part_id))
full_lines = full_lines[part_id::part_num]
batch_size = int(params['batch_size']) // trainers_num
if params['mode'] != "test" and len(full_lines) < batch_size:
raise SampleNumException('', len(full_lines), batch_size)
......@@ -197,7 +200,7 @@ def partial_reader(params, full_lines, part_id=0, part_num=1):
return reader
def mp_reader(params):
def mp_reader(params, batch_size):
"""
multiprocess reader
......@@ -210,11 +213,16 @@ def mp_reader(params):
if params["mode"] == "train":
full_lines = shuffle_lines(full_lines, seed=None)
# NOTE: multiprocess reader is not supported on windows
if sys.platform == "win32":
return partial_reader(params, full_lines, 0, 1, batch_size)
part_num = 1 if 'num_workers' not in params else params['num_workers']
readers = []
for part_id in range(part_num):
readers.append(partial_reader(params, full_lines, part_id, part_num))
readers.append(
partial_reader(params, full_lines, part_id, part_num, batch_size))
return multiprocess_reader(readers, use_pipe=False)
......@@ -248,6 +256,7 @@ class Reader:
except KeyError:
raise ModeException(mode=mode)
self.use_gpu = config.get("use_gpu", True)
use_mix = config.get('use_mix')
self.params['mode'] = mode
if seed is not None:
......@@ -257,10 +266,17 @@ class Reader:
self.batch_ops = create_operators(self.params['mix'])
def __call__(self):
batch_size = int(self.params['batch_size']) // trainers_num
device_num = trainers_num
# non-distributed launch
if trainers_num <= 0:
if self.use_gpu:
device_num = fluid.core.get_cuda_device_count()
else:
device_num = int(os.environ.get('CPU_NUM', 1))
batch_size = int(self.params['batch_size']) // device_num
def wrapper():
reader = mp_reader(self.params)
reader = mp_reader(self.params, batch_size)
batch = []
for idx, sample in enumerate(reader()):
img, label = sample
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import paddle.fluid as fluid
import program
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model
def parse_args():
parser = argparse.ArgumentParser("PaddleClas eval script")
parser.add_argument(
'-c',
'--config',
type=str,
default='./configs/eval.yaml',
help='config file path')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
config = get_config(args.config, overrides=args.override, show=True)
use_gpu = config.get("use_gpu", True)
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
startup_prog = fluid.Program()
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config, valid_prog, startup_prog, is_train=False, is_distributed=False)
valid_prog = valid_prog.clone(for_test=True)
exe = fluid.Executor(places[0])
exe.run(startup_prog)
init_model(config, valid_prog, exe)
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, places)
compiled_valid_prog = program.compile(config, valid_prog)
program.run(valid_dataloader, exe, compiled_valid_prog, valid_fetchs, -1,
'eval')
if __name__ == '__main__':
args = parse_args()
main(args)
......@@ -18,6 +18,7 @@ from __future__ import print_function
import os
import time
import numpy as np
from collections import OrderedDict
......@@ -314,7 +315,7 @@ def mixed_precision_optimizer(config, optimizer):
return optimizer
def build(config, main_prog, startup_prog, is_train=True):
def build(config, main_prog, startup_prog, is_train=True, is_distributed=True):
"""
Build a program using a model and an optimizer
1. create feeds
......@@ -328,6 +329,7 @@ def build(config, main_prog, startup_prog, is_train=True):
main_prog(): main program
startup_prog(): startup program
is_train(bool): train or valid
is_distributed(bool): whether to use distributed training method
Returns:
dataloader(): a bridge between the model and the data
......@@ -356,6 +358,7 @@ def build(config, main_prog, startup_prog, is_train=True):
fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False))
optimizer = mixed_precision_optimizer(config, optimizer)
if is_distributed:
optimizer = dist_optimizer(config, optimizer)
optimizer.minimize(fetchs['loss'][0])
if config.get('use_ema'):
......@@ -430,7 +433,7 @@ def run(dataloader,
batch_time.update(time.time() - tic)
tic = time.time()
for i, m in enumerate(metrics):
metric_list[i].update(m[0], len(batch[0]))
metric_list[i].update(np.mean(m), len(batch[0]))
fetchs_str = ''.join([str(m.value) + ' '
for m in metric_list] + [batch_time.value]) + 's'
if vdl_writer:
......
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import paddle.fluid as fluid
from ppcls.data import Reader
from ppcls.utils.config import get_config
from ppcls.utils.save_load import init_model, save_model
from ppcls.utils import logger
import program
def parse_args():
parser = argparse.ArgumentParser("PaddleClas train script")
parser.add_argument(
'-c',
'--config',
type=str,
default='configs/ResNet/ResNet50.yaml',
help='config file path')
parser.add_argument(
'--vdl_dir',
type=str,
default=None,
help='VisualDL logging directory for image.')
parser.add_argument(
'-o',
'--override',
action='append',
default=[],
help='config options to be overridden')
args = parser.parse_args()
return args
def main(args):
config = get_config(args.config, overrides=args.override, show=True)
# assign the place
use_gpu = config.get("use_gpu", True)
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
# startup_prog is used to do some parameter init work,
# and train prog is used to hold the network
startup_prog = fluid.Program()
train_prog = fluid.Program()
best_top1_acc = 0.0 # best top1 acc record
if not config.get('use_ema'):
train_dataloader, train_fetchs = program.build(
config,
train_prog,
startup_prog,
is_train=True,
is_distributed=False)
else:
train_dataloader, train_fetchs, ema = program.build(
config,
train_prog,
startup_prog,
is_train=True,
is_distributed=False)
if config.validate:
valid_prog = fluid.Program()
valid_dataloader, valid_fetchs = program.build(
config,
valid_prog,
startup_prog,
is_train=False,
is_distributed=False)
# clone to prune some content which is irrelevant in valid_prog
valid_prog = valid_prog.clone(for_test=True)
# create the "Executor" with the statement of which place
exe = fluid.Executor(places[0])
# Parameter initialization
exe.run(startup_prog)
# load model from 1. checkpoint to resume training, 2. pretrained model to finetune
init_model(config, train_prog, exe)
train_reader = Reader(config, 'train')()
train_dataloader.set_sample_list_generator(train_reader, places)
if config.validate:
valid_reader = Reader(config, 'valid')()
valid_dataloader.set_sample_list_generator(valid_reader, places)
compiled_valid_prog = program.compile(config, valid_prog)
compiled_train_prog = program.compile(config, train_prog,
train_fetchs['loss'][0].name)
if args.vdl_dir:
from visualdl import LogWriter
vdl_writer = LogWriter(args.vdl_dir)
else:
vdl_writer = None
for epoch_id in range(config.epochs):
# 1. train with train dataset
program.run(train_dataloader, exe, compiled_train_prog, train_fetchs,
epoch_id, 'train', vdl_writer)
if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0:
# 2. validate with validate dataset
if config.validate and epoch_id % config.valid_interval == 0:
if config.get('use_ema'):
logger.info(logger.coloring("EMA validate start..."))
with ema.apply(exe):
top1_acc = program.run(valid_dataloader, exe,
compiled_valid_prog,
valid_fetchs, epoch_id, 'valid')
logger.info(logger.coloring("EMA validate over!"))
top1_acc = program.run(valid_dataloader, exe,
compiled_valid_prog, valid_fetchs,
epoch_id, 'valid')
if top1_acc > best_top1_acc:
best_top1_acc = top1_acc
message = "The best top1 acc {:.5f}, in epoch: {:d}".format(
best_top1_acc, epoch_id)
logger.info("{:s}".format(logger.coloring(message, "RED")))
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(train_prog, model_path,
"best_model_in_epoch_" + str(epoch_id))
# 3. save the persistable model
if epoch_id % config.save_interval == 0:
model_path = os.path.join(config.model_save_dir,
config.ARCHITECTURE["name"])
save_model(train_prog, model_path, epoch_id)
if __name__ == '__main__':
args = parse_args()
main(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册