diff --git a/deploy/paddleserving/README.md b/deploy/paddleserving/README.md index d0fa99e6d72f10d3d2b5907285528b68685128e0..de7965bac752f6bc9cd1de224b791b0a84f0e699 100644 --- a/deploy/paddleserving/README.md +++ b/deploy/paddleserving/README.md @@ -1,19 +1,235 @@ -# Imagenet Pipeline WebService +# OCR Pipeline WebService -This document will takes Imagenet service as an example to introduce how to use Pipeline WebService. +(English|[简体中文](./README_CN.md)) -## Get model +PaddleOCR provides two service deployment methods: +- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md) +- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial. + +# Service deployment based on PaddleServing + +This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service. + +Some Key Features of Paddle Serving: +- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command. +- Industrial serving features supported, such as models management, online loading, online A/B testing etc. +- Highly concurrent and efficient communication between clients and servers supported. + +The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md). + + +## Contents +- [Environmental preparation](#environmental-preparation) +- [Model conversion](#model-conversion) +- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment) +- [FAQ](#faq) + + +## Environmental preparation + +PaddleOCR operating environment and Paddle Serving operating environment are needed. + +1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md). + Download the corresponding paddle whl package according to the environment, it is recommended to install version 2.0.1. + + +2. The steps of PaddleServing operating environment prepare are as follows: + + Install serving which used to start the service + ``` + pip3 install paddle-serving-server==0.6.1 # for CPU + pip3 install paddle-serving-server-gpu==0.6.1 # for GPU + # Other GPU environments need to confirm the environment and then choose to execute the following commands + pip3 install paddle-serving-server-gpu==0.6.1.post101 # GPU with CUDA10.1 + TensorRT6 + pip3 install paddle-serving-server-gpu==0.6.1.post11 # GPU with CUDA11 + TensorRT7 + ``` + +3. Install the client to send requests to the service + In [download link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md) find the client installation package corresponding to the python version. + The python3.7 version is recommended here: + + ``` + wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp37-none-any.whl + pip3 install paddle_serving_client-0.0.0-cp37-none-any.whl + ``` + +4. Install serving-app + ``` + pip3 install paddle-serving-app==0.6.1 + ``` + + **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md). + + + +## Model conversion +When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy. + +Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15) of PPOCR +``` +# Download and unzip the OCR text detection model +wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar +# Download and unzip the OCR text recognition model +wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar + +``` +Then, you can use installed paddle_serving_client tool to convert inference model to mobile model. +``` +# Detection model conversion +python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_det_infer/ \ + --model_filename inference.pdmodel \ + --params_filename inference.pdiparams \ + --serving_server ./ppocr_det_mobile_2.0_serving/ \ + --serving_client ./ppocr_det_mobile_2.0_client/ + +# Recognition model conversion +python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_infer/ \ + --model_filename inference.pdmodel \ + --params_filename inference.pdiparams \ + --serving_server ./ppocr_rec_mobile_2.0_serving/ \ + --serving_client ./ppocr_rec_mobile_2.0_client/ + +``` + +After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format: ``` -sh get_model.sh +|- ppocr_det_mobile_2.0_serving/ + |- __model__ + |- __params__ + |- serving_server_conf.prototxt + |- serving_server_conf.stream.prototxt + +|- ppocr_det_mobile_2.0_client + |- serving_client_conf.prototxt + |- serving_client_conf.stream.prototxt + ``` +The recognition model is the same. + + +## Paddle Serving pipeline deployment + +1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step. + ``` + git clone https://github.com/PaddlePaddle/PaddleOCR + + # Enter the working directory + cd PaddleOCR/deploy/pdserver/ + ``` + + The pdserver directory contains the code to start the pipeline service and send prediction requests, including: + ``` + __init__.py + config.yml # Start the service configuration file + ocr_reader.py # OCR model pre-processing and post-processing code implementation + pipeline_http_client.py # Script to send pipeline prediction request + web_service.py # Start the script of the pipeline server + ``` + +2. Run the following command to start the service. + ``` + # Start the service and save the running log in log.txt + python3 web_service.py &>log.txt & + ``` + After the service is successfully started, a log similar to the following will be printed in log.txt + ![](./imgs/start_server.png) + +3. Send service request + ``` + python3 pipeline_http_client.py + ``` + After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is: + ![](./imgs/results.png) + + Adjust the number of concurrency in config.yml to get the largest QPS. Generally, the number of concurrent detection and recognition is 2:1 + + ``` + det: + concurrency: 8 + ... + rec: + concurrency: 4 + ... + ``` + + Multiple service requests can be sent at the same time if necessary. + + The predicted performance data will be automatically written into the `PipelineServingLogs/pipeline.tracer` file. + + Tested on 200 real pictures, and limited the detection long side to 960. The average QPS on T4 GPU can reach around 23: + + ``` -## Start server + 2021-05-13 03:42:36,895 ==================== TRACER ====================== + 2021-05-13 03:42:36,975 Op(rec): + 2021-05-13 03:42:36,976 in[14.472382882882883 ms] + 2021-05-13 03:42:36,976 prep[9.556855855855856 ms] + 2021-05-13 03:42:36,976 midp[59.921905405405404 ms] + 2021-05-13 03:42:36,976 postp[15.345945945945946 ms] + 2021-05-13 03:42:36,976 out[1.9921216216216215 ms] + 2021-05-13 03:42:36,976 idle[0.16254943864471572] + 2021-05-13 03:42:36,976 Op(det): + 2021-05-13 03:42:36,976 in[315.4468035714286 ms] + 2021-05-13 03:42:36,976 prep[69.5980625 ms] + 2021-05-13 03:42:36,976 midp[18.989535714285715 ms] + 2021-05-13 03:42:36,976 postp[18.857803571428573 ms] + 2021-05-13 03:42:36,977 out[3.1337544642857145 ms] + 2021-05-13 03:42:36,977 idle[0.7477961159203756] + 2021-05-13 03:42:36,977 DAGExecutor: + 2021-05-13 03:42:36,977 Query count[224] + 2021-05-13 03:42:36,977 QPS[22.4 q/s] + 2021-05-13 03:42:36,977 Succ[0.9910714285714286] + 2021-05-13 03:42:36,977 Error req[169, 170] + 2021-05-13 03:42:36,977 Latency: + 2021-05-13 03:42:36,977 ave[535.1678348214285 ms] + 2021-05-13 03:42:36,977 .50[172.651 ms] + 2021-05-13 03:42:36,977 .60[187.904 ms] + 2021-05-13 03:42:36,977 .70[245.675 ms] + 2021-05-13 03:42:36,977 .80[526.684 ms] + 2021-05-13 03:42:36,977 .90[854.596 ms] + 2021-05-13 03:42:36,977 .95[1722.728 ms] + 2021-05-13 03:42:36,977 .99[3990.292 ms] + 2021-05-13 03:42:36,978 Channel (server worker num[10]): + 2021-05-13 03:42:36,978 chl0(In: ['@DAGExecutor'], Out: ['det']) size[0/0] + 2021-05-13 03:42:36,979 chl1(In: ['det'], Out: ['rec']) size[6/0] + 2021-05-13 03:42:36,979 chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0] + ``` + +## WINDOWS Users + +Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/WINDOWS_TUTORIAL.md) + + +**WINDOWS user can only use version 0.5.0 CPU Mode** + +**Prepare Stage:** ``` -python resnet50_web_service.py &>log.txt & +pip3 install paddle-serving-server==0.5.0 +pip3 install paddle-serving-app==0.3.1 ``` -## RPC test +1. Start Server + +``` +cd win +python3 ocr_web_server.py gpu(for gpu user) +or +python3 ocr_web_server.py cpu(for cpu user) ``` -python pipeline_rpc_client.py + +2. Client Send Requests + +``` +python3 ocr_web_client.py +``` + + +## FAQ +**Q1**: No result return after sending the request. + +**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is: ``` +unset https_proxy +unset http_proxy +``` diff --git a/deploy/paddleserving/README_CN.md b/deploy/paddleserving/README_CN.md index be50514ca1d7afc77bacb49f5d9ce48ef8a963fe..786a07664b557ea3a2462ec9e8d4dc4f55f9a6a3 100644 --- a/deploy/paddleserving/README_CN.md +++ b/deploy/paddleserving/README_CN.md @@ -29,8 +29,7 @@ PaddleClas提供2种服务部署方式: 需要准备PaddleClas的运行环境和PaddleServing的运行环境。 -- 准备PaddleClas的运行环境[链接](../../doc/doc_ch/installation.md) - 根据环境下载对应的paddle whl包,推荐安装2.0.1版本 +- 准备PaddleClas的[运行环境](../../docs/zh_CN/tutorials/install.md), 根据环境下载对应的paddle whl包,推荐安装2.0.1版本 - 准备PaddleServing的运行环境,步骤如下 diff --git a/deploy/paddleserving/imgs/results.png b/deploy/paddleserving/imgs/results.png new file mode 100644 index 0000000000000000000000000000000000000000..4d6db757a19cb0355ca8e8e8675a6d5d7671b022 Binary files /dev/null and b/deploy/paddleserving/imgs/results.png differ diff --git a/deploy/paddleserving/imgs/start_server.png b/deploy/paddleserving/imgs/start_server.png new file mode 100644 index 0000000000000000000000000000000000000000..8294e19b63ee3908f887d4a7d85bc421d360a371 Binary files /dev/null and b/deploy/paddleserving/imgs/start_server.png differ