diff --git a/.gitignore b/.gitignore index f56c23c0058a9d6c82ec50e682557ec5dc316aa8..d8f8bca6ec5faa7f12c78c2dbeb9c7d11e903b97 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,4 @@ _build/ build/ log/ nohup.out +.DS_Store diff --git a/benchmark/prepare_data.sh b/benchmark/prepare_data.sh index 83a6856983920968539d96c608559e65c37ca48a..411459cf4874aea5ca9ebc83bab556405121dba1 100644 --- a/benchmark/prepare_data.sh +++ b/benchmark/prepare_data.sh @@ -1,6 +1,17 @@ #!/bin/bash dataset_url=$1 +package_check_list=(imageio tqdm Cython pycocotools tb_paddle scipy pandas wget h5py sklearn opencv-python visualdl) +for package in ${package_check_list[@]}; do + if python -c "import ${package}" >/dev/null 2>&1; then + echo "${package} have already installed" + else + echo "${package} NOT FOUND" + pip install ${package} + echo "${package} installed" + fi +done + cd dataset rm -rf ILSVRC2012 wget -nc ${dataset_url} diff --git a/benchmark/run_all.sh b/benchmark/run_all.sh index 7e7b5fe0a26c533e467f876d12929a788d23097c..3c6cee83d061c8950bec5a78b6a1db410d08aa88 100644 --- a/benchmark/run_all.sh +++ b/benchmark/run_all.sh @@ -5,20 +5,25 @@ # pip install ... # 2 拷贝该模型需要数据、预训练模型 # 3 批量运行(如不方便批量,1,2需放到单个模型中) - -model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) +model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 ShuffleNetV2_x1_0 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # benchmark 监控模型列表 +#model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # 该脚本支持列表 fp_item_list=(fp32) -bs_list=(32 64 96 128) +#bs_list=(32 64 96 128) for model_mode in ${model_mode_list[@]}; do for fp_item in ${fp_item_list[@]}; do + if [ ${model_mode} = MobileNetV3_large_x1_0 ] || [ ${model_mode} = ShuffleNetV2_x1_0 ]; then + bs_list=(256) + else + bs_list=(64) + fi for bs_item in ${bs_list[@]};do echo "index is speed, 1gpus, begin, ${model_name}" run_mode=sp - CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min) + CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode} | tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_1gpus 2>&1 # (5min) sleep 10 echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}" run_mode=mp - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} + CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode}| tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_8gpus8p 2>&1 sleep 10 done done diff --git a/benchmark/run_benchmark.sh b/benchmark/run_benchmark.sh index 85cb4bc8171405386c7448852a6bc295acd3d406..e05780deaca813bd50d8ad9385deb089fc1ed4c9 100644 --- a/benchmark/run_benchmark.sh +++ b/benchmark/run_benchmark.sh @@ -6,10 +6,19 @@ function _set_params(){ run_mode=${1:-"sp"} # 单卡sp|多卡mp batch_size=${2:-"64"} fp_item=${3:-"fp32"} # fp32|fp16 - epochs=${4:-"10"} # 可选,如果需要修改代码提前中断 + epochs=${4:-"2"} # 可选,如果需要修改代码提前中断 model_name=${5:-"model_name"} run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数 - + + index=1 + mission_name="图像分类" # 模型所属任务名称,具体可参考scripts/config.ini (必填) + direction_id=0 # 任务所属方向,0:CV,1:NLP,2:Rec。 (必填) + skip_steps=8 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填) + keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填) + keyword_loss="loss:" #选填 + model_mode=-1 # 解析日志,具体参考scripts/analysis.py. (必填) + ips_unit="images/s" + base_batch_size=$batch_size # 以下不用修改 device=${CUDA_VISIBLE_DEVICES//,/ } arr=(${device}) @@ -26,7 +35,7 @@ function _train(){ model_config=`find ppcls/configs/ImageNet -name ${model_name}_fp16.yaml` fi - train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs}" + train_cmd="-c ${model_config} -o DataLoader.Train.sampler.batch_size=${batch_size} -o Global.epochs=${epochs} -o Global.eval_during_train=False -o Global.print_batch_step=2" case ${run_mode} in sp) train_cmd="python -u tools/train.py ${train_cmd}" ;; mp) @@ -36,7 +45,7 @@ function _train(){ esac rm -rf mylog # 以下不用修改 - timeout 15m ${train_cmd} > ${log_file} 2>&1 + timeout 5m ${train_cmd} > ${log_file} 2>&1 if [ $? -ne 0 ];then echo -e "${model_name}, FAIL" export job_fail_flag=1 @@ -51,6 +60,8 @@ function _train(){ cp mylog/workerlog.0 ${log_file} fi } - + +source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开 _set_params $@ -_train +_run +#_train diff --git a/deploy/cpp_shitu/CMakeLists.txt b/deploy/cpp_shitu/CMakeLists.txt new file mode 100755 index 0000000000000000000000000000000000000000..f412654d030c4bf922bce430055673d93b783262 --- /dev/null +++ b/deploy/cpp_shitu/CMakeLists.txt @@ -0,0 +1,249 @@ +project(pp_shitu CXX C) +cmake_minimum_required(VERSION 3.14) + +option(WITH_MKL "Compile demo with MKL/OpenBlas support, default use MKL." ON) +option(WITH_GPU "Compile demo with GPU/CPU, default use CPU." OFF) +option(WITH_STATIC_LIB "Compile demo with static/shared library, default use static." ON) +option(WITH_TENSORRT "Compile demo with TensorRT." OFF) +option(FAISS_WITH_MKL "Faiss Compile demo with MKL." OFF) + +SET(PADDLE_LIB "" CACHE PATH "Location of libraries") +SET(OPENCV_DIR "" CACHE PATH "Location of libraries") +SET(CUDA_LIB "" CACHE PATH "Location of libraries") +SET(CUDNN_LIB "" CACHE PATH "Location of libraries") +SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT") +SET(FAISS_DIR "" CACHE PATH "Location of libraries") + +set(DEMO_NAME "pp_shitu") + +if (FAISS_WITH_MKL) + SET(BLAS_NAME "mklml_intel") +else() + SET(BLAS_NAME "openblas") +endif() + +include(external-cmake/yaml-cpp.cmake) +include_directories("${CMAKE_SOURCE_DIR}/") +include_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/src/ext-yaml-cpp/include") +link_directories("${CMAKE_CURRENT_BINARY_DIR}/ext/yaml-cpp/lib") + +macro(safe_set_static_flag) + foreach(flag_var + CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE + CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO) + if(${flag_var} MATCHES "/MD") + string(REGEX REPLACE "/MD" "/MT" ${flag_var} "${${flag_var}}") + endif(${flag_var} MATCHES "/MD") + endforeach(flag_var) +endmacro() + + +if (WITH_MKL) + ADD_DEFINITIONS(-DUSE_MKL) +endif() + +if(NOT DEFINED FAISS_DIR) + message(FATAL_ERROR "please set FAISS_DIR with -DFAISS_DIR=/path/faiss") +endif() + +if(NOT DEFINED PADDLE_LIB) + message(FATAL_ERROR "please set PADDLE_LIB with -DPADDLE_LIB=/path/paddle/lib") +endif() + +if(NOT DEFINED OPENCV_DIR) + message(FATAL_ERROR "please set OPENCV_DIR with -DOPENCV_DIR=/path/opencv") +endif() + +if (WIN32) + include_directories("${FAISS_DIR}/include") + link_directories("${FAISS_DIR}/lib") + find_package(faiss REQUIRED PATHS ${FAISS_DIR}/share/faiss/ NO_DEFAULT_PATH) +else() + find_package(faiss REQUIRED PATHS ${FAISS_DIR}/share/faiss NO_DEFAULT_PATH) + include_directories("${FAISS_DIR}/include") + link_directories("${FAISS_DIR}/lib") +endif() + +if (WIN32) + include_directories("${PADDLE_LIB}/paddle/fluid/inference") + include_directories("${PADDLE_LIB}/paddle/include") + link_directories("${PADDLE_LIB}/paddle/fluid/inference") + find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/build/ NO_DEFAULT_PATH) + +else () + find_package(OpenCV REQUIRED PATHS ${OPENCV_DIR}/share/OpenCV NO_DEFAULT_PATH) + include_directories("${PADDLE_LIB}/paddle/include") + link_directories("${PADDLE_LIB}/paddle/lib") +endif () +include_directories(${OpenCV_INCLUDE_DIRS}) + +if (WIN32) + add_definitions("/DGOOGLE_GLOG_DLL_DECL=") + set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd") + set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT") + set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd") + set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT") + if (WITH_STATIC_LIB) + safe_set_static_flag() + add_definitions(-DSTATIC_LIB) + endif() +else() + set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -g -O3 -std=c++11") + set(CMAKE_STATIC_LIBRARY_PREFIX "") +endif() +message("flags" ${CMAKE_CXX_FLAGS}) + + +if (WITH_GPU) + if (NOT DEFINED CUDA_LIB OR ${CUDA_LIB} STREQUAL "") + message(FATAL_ERROR "please set CUDA_LIB with -DCUDA_LIB=/path/cuda-8.0/lib64") + endif() + if (NOT WIN32) + if (NOT DEFINED CUDNN_LIB) + message(FATAL_ERROR "please set CUDNN_LIB with -DCUDNN_LIB=/path/cudnn_v7.4/cuda/lib64") + endif() + endif(NOT WIN32) +endif() + +include_directories("${PADDLE_LIB}/third_party/install/protobuf/include") +include_directories("${PADDLE_LIB}/third_party/install/glog/include") +include_directories("${PADDLE_LIB}/third_party/install/gflags/include") +include_directories("${PADDLE_LIB}/third_party/install/xxhash/include") +include_directories("${PADDLE_LIB}/third_party/install/zlib/include") +include_directories("${PADDLE_LIB}/third_party/boost") +include_directories("${PADDLE_LIB}/third_party/eigen3") + +include_directories("${CMAKE_SOURCE_DIR}/") + +if (NOT WIN32) + if (WITH_TENSORRT AND WITH_GPU) + include_directories("${TENSORRT_DIR}/include") + link_directories("${TENSORRT_DIR}/lib") + endif() +endif(NOT WIN32) + +link_directories("${PADDLE_LIB}/third_party/install/zlib/lib") + +link_directories("${PADDLE_LIB}/third_party/install/protobuf/lib") +link_directories("${PADDLE_LIB}/third_party/install/glog/lib") +link_directories("${PADDLE_LIB}/third_party/install/gflags/lib") +link_directories("${PADDLE_LIB}/third_party/install/xxhash/lib") +link_directories("${PADDLE_LIB}/paddle/lib") + + +if(WITH_MKL) + include_directories("${PADDLE_LIB}/third_party/install/mklml/include") + if (WIN32) + set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.lib + ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.lib) + else () + set(MATH_LIB ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} + ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5${CMAKE_SHARED_LIBRARY_SUFFIX}) + execute_process(COMMAND cp -r ${PADDLE_LIB}/third_party/install/mklml/lib/libmklml_intel${CMAKE_SHARED_LIBRARY_SUFFIX} /usr/lib) + endif () + set(MKLDNN_PATH "${PADDLE_LIB}/third_party/install/mkldnn") + if(EXISTS ${MKLDNN_PATH}) + include_directories("${MKLDNN_PATH}/include") + if (WIN32) + set(MKLDNN_LIB ${MKLDNN_PATH}/lib/mkldnn.lib) + else () + set(MKLDNN_LIB ${MKLDNN_PATH}/lib/libmkldnn.so.0) + endif () + endif() +else() + if (WIN32) + set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/openblas${CMAKE_STATIC_LIBRARY_SUFFIX}) + else () + set(MATH_LIB ${PADDLE_LIB}/third_party/install/openblas/lib/libopenblas${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif () +endif() + +# Note: libpaddle_inference_api.so/a must put before libpaddle_fluid.so/a +if(WITH_STATIC_LIB) + if(WIN32) + set(DEPS + ${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX}) + else() + set(DEPS + ${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif() +else() + if(WIN32) + set(DEPS + ${PADDLE_LIB}/paddle/lib/paddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX}) + else() + set(DEPS + ${PADDLE_LIB}/paddle/lib/libpaddle_inference${CMAKE_SHARED_LIBRARY_SUFFIX}) + endif() +endif(WITH_STATIC_LIB) + +if (NOT WIN32) + set(DEPS ${DEPS} + ${MATH_LIB} ${MKLDNN_LIB} + glog gflags protobuf z xxhash yaml-cpp + ) + if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib") + set(DEPS ${DEPS} snappystream) + endif() + if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib") + set(DEPS ${DEPS} snappy) + endif() +else() + set(DEPS ${DEPS} + ${MATH_LIB} ${MKLDNN_LIB} + glog gflags_static libprotobuf xxhash libyaml-cppmt) + set(DEPS ${DEPS} libcmt shlwapi) + if (EXISTS "${PADDLE_LIB}/third_party/install/snappy/lib") + set(DEPS ${DEPS} snappy) + endif() + if(EXISTS "${PADDLE_LIB}/third_party/install/snappystream/lib") + set(DEPS ${DEPS} snappystream) + endif() +endif(NOT WIN32) + + +if(WITH_GPU) + if(NOT WIN32) + if (WITH_TENSORRT) + set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer${CMAKE_SHARED_LIBRARY_SUFFIX}) + set(DEPS ${DEPS} ${TENSORRT_DIR}/lib/libnvinfer_plugin${CMAKE_SHARED_LIBRARY_SUFFIX}) + endif() + set(DEPS ${DEPS} ${CUDA_LIB}/libcudart${CMAKE_SHARED_LIBRARY_SUFFIX}) + set(DEPS ${DEPS} ${CUDNN_LIB}/libcudnn${CMAKE_SHARED_LIBRARY_SUFFIX}) + else() + set(DEPS ${DEPS} ${CUDA_LIB}/cudart${CMAKE_STATIC_LIBRARY_SUFFIX} ) + set(DEPS ${DEPS} ${CUDA_LIB}/cublas${CMAKE_STATIC_LIBRARY_SUFFIX} ) + set(DEPS ${DEPS} ${CUDNN_LIB}/cudnn${CMAKE_STATIC_LIBRARY_SUFFIX}) + endif() +endif() + + +if (NOT WIN32) + set(EXTERNAL_LIB "-ldl -lrt -lgomp -lz -lm -lpthread") + set(DEPS ${DEPS} ${EXTERNAL_LIB}) +endif() + +set(DEPS ${DEPS} ${OpenCV_LIBS}) + +include(FetchContent) +include(external-cmake/auto-log.cmake) +include_directories(${FETCHCONTENT_BASE_DIR}/extern_autolog-src) + + +AUX_SOURCE_DIRECTORY(./src SRCS) +add_executable(${DEMO_NAME} ${SRCS}) +ADD_DEPENDENCIES(${DEMO_NAME} ext-yaml-cpp) +target_link_libraries(${DEMO_NAME} ${DEPS}) +target_link_libraries(${DEMO_NAME} ${FAISS_DIR}/lib/libfaiss${CMAKE_STATIC_LIBRARY_SUFFIX}) +target_link_libraries(${DEMO_NAME} ${BLAS_NAME}${CMAKE_SHARED_LIBRARY_SUFFIX}) + +if (WIN32 AND WITH_MKL) + add_custom_command(TARGET ${DEMO_NAME} POST_BUILD + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./mkldnn.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/mklml.dll ./release/mklml.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mklml/lib/libiomp5md.dll ./release/libiomp5md.dll + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${PADDLE_LIB}/third_party/install/mkldnn/lib/mkldnn.dll ./release/mkldnn.dll + ) +endif() diff --git a/deploy/cpp_shitu/external-cmake/auto-log.cmake b/deploy/cpp_shitu/external-cmake/auto-log.cmake new file mode 100644 index 0000000000000000000000000000000000000000..9be9c2fb3b6d61207fad0d9bf216f4b9ad715fe3 --- /dev/null +++ b/deploy/cpp_shitu/external-cmake/auto-log.cmake @@ -0,0 +1,12 @@ +find_package(Git REQUIRED) +include(FetchContent) + +set(FETCHCONTENT_BASE_DIR "${CMAKE_CURRENT_BINARY_DIR}/third-party") + +FetchContent_Declare( + extern_Autolog + PREFIX autolog + GIT_REPOSITORY https://github.com/LDOUBLEV/AutoLog.git + GIT_TAG main +) +FetchContent_MakeAvailable(extern_Autolog) diff --git a/deploy/cpp_shitu/external-cmake/yaml-cpp.cmake b/deploy/cpp_shitu/external-cmake/yaml-cpp.cmake new file mode 100644 index 0000000000000000000000000000000000000000..7bc7f34d476d69d57336940bcf6c8c55311b8112 --- /dev/null +++ b/deploy/cpp_shitu/external-cmake/yaml-cpp.cmake @@ -0,0 +1,30 @@ + +find_package(Git REQUIRED) + +include(ExternalProject) + +message("${CMAKE_BUILD_TYPE}") + +ExternalProject_Add( + ext-yaml-cpp + URL https://bj.bcebos.com/paddlex/deploy/deps/yaml-cpp.zip + URL_MD5 9542d6de397d1fbd649ed468cb5850e6 + CMAKE_ARGS + -DYAML_CPP_BUILD_TESTS=OFF + -DYAML_CPP_BUILD_TOOLS=OFF + -DYAML_CPP_INSTALL=OFF + -DYAML_CPP_BUILD_CONTRIB=OFF + -DMSVC_SHARED_RT=OFF + -DBUILD_SHARED_LIBS=OFF + -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} + -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} + -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG} + -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE} + -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib + -DCMAKE_ARCHIVE_OUTPUT_DIRECTORY=${CMAKE_BINARY_DIR}/ext/yaml-cpp/lib + PREFIX "${CMAKE_BINARY_DIR}/ext/yaml-cpp" + # Disable install step + INSTALL_COMMAND "" + LOG_DOWNLOAD ON + LOG_BUILD 1 +) diff --git a/deploy/cpp_shitu/include/feature_extracter.h b/deploy/cpp_shitu/include/feature_extracter.h new file mode 100644 index 0000000000000000000000000000000000000000..e83caee73ed3ec69cc3864794b3c1f691bb38c34 --- /dev/null +++ b/deploy/cpp_shitu/include/feature_extracter.h @@ -0,0 +1,110 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "opencv2/core.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/imgproc.hpp" +#include "paddle_inference_api.h" +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include + +using namespace paddle_infer; + +namespace Feature { + + class FeatureExtracter { + public: + explicit FeatureExtracter(const YAML::Node &config_file) { + this->use_gpu_ = config_file["Global"]["use_gpu"].as(); + if (config_file["Global"]["gpu_id"].IsDefined()) + this->gpu_id_ = config_file["Global"]["gpu_id"].as(); + else + this->gpu_id_ = 0; + this->gpu_mem_ = config_file["Global"]["gpu_mem"].as(); + this->cpu_math_library_num_threads_ = + config_file["Global"]["cpu_num_threads"].as(); + this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as(); + this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as(); + this->use_fp16_ = config_file["Global"]["use_fp16"].as(); + + this->cls_model_path_ = + config_file["Global"]["rec_inference_model_dir"].as() + + OS_PATH_SEP + "inference.pdmodel"; + this->cls_params_path_ = + config_file["Global"]["rec_inference_model_dir"].as() + + OS_PATH_SEP + "inference.pdiparams"; + this->resize_size_ = + config_file["RecPreProcess"]["transform_ops"][0]["ResizeImage"]["size"] + .as(); + this->scale_ = config_file["RecPreProcess"]["transform_ops"][1]["NormalizeImage"]["scale"].as(); + this->mean_ = config_file["RecPreProcess"]["transform_ops"][1] + ["NormalizeImage"]["mean"] + .as < std::vector < float >> (); + this->std_ = config_file["RecPreProcess"]["transform_ops"][1] + ["NormalizeImage"]["std"] + .as < std::vector < float >> (); + if (config_file["Global"]["rec_feature_normlize"].IsDefined()) + this->feature_norm = + config_file["Global"]["rec_feature_normlize"].as(); + + LoadModel(cls_model_path_, cls_params_path_); + } + + // Load Paddle inference model + void LoadModel(const std::string &model_path, const std::string ¶ms_path); + + // Run predictor + void Run(cv::Mat &img, std::vector &out_data, + std::vector ×); + + void FeatureNorm(std::vector &feature); + + std::shared_ptr predictor_; + + private: + bool use_gpu_ = false; + int gpu_id_ = 0; + int gpu_mem_ = 4000; + int cpu_math_library_num_threads_ = 4; + bool use_mkldnn_ = false; + bool use_tensorrt_ = false; + bool feature_norm = true; + bool use_fp16_ = false; + std::vector mean_ = {0.485f, 0.456f, 0.406f}; + std::vector std_ = {0.229f, 0.224f, 0.225f}; + float scale_ = 0.00392157; + int resize_size_ = 224; + int resize_short_ = 224; + std::string cls_model_path_; + std::string cls_params_path_; + + // pre-process + ResizeImg resize_op_; + Normalize normalize_op_; + Permute permute_op_; + }; + +} // namespace Feature diff --git a/deploy/cpp_shitu/include/nms.h b/deploy/cpp_shitu/include/nms.h new file mode 100644 index 0000000000000000000000000000000000000000..02956246af237e6d6b9674d4af8abdf15b01f923 --- /dev/null +++ b/deploy/cpp_shitu/include/nms.h @@ -0,0 +1,85 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// This code is adpated from opencv(https://github.com/opencv/opencv) + +#include +#include + +template +static inline bool SortScorePairDescend(const std::pair &pair1, + const std::pair &pair2) { + return pair1.first > pair2.first; +} + +float RectOverlap(const Detection::ObjectResult &a, + const Detection::ObjectResult &b) { + float Aa = (a.rect[2] - a.rect[0] + 1) * (a.rect[3] - a.rect[1] + 1); + float Ab = (b.rect[2] - b.rect[0] + 1) * (b.rect[3] - b.rect[1] + 1); + + int iou_w = max(min(a.rect[2], b.rect[2]) - max(a.rect[0], b.rect[0]) + 1, 0); + int iou_h = max(min(a.rect[3], b.rect[3]) - max(a.rect[1], b.rect[1]) + 1, 0); + float Aab = iou_w * iou_h; + return Aab / (Aa + Ab - Aab); +} + +// Get max scores with corresponding indices. +// scores: a set of scores. +// threshold: only consider scores higher than the threshold. +// top_k: if -1, keep all; otherwise, keep at most top_k. +// score_index_vec: store the sorted (score, index) pair. +inline void +GetMaxScoreIndex(const std::vector &det_result, + const float threshold, + std::vector > &score_index_vec) { + // Generate index score pairs. + for (size_t i = 0; i < det_result.size(); ++i) { + if (det_result[i].confidence > threshold) { + score_index_vec.push_back(std::make_pair(det_result[i].confidence, i)); + } + } + + // Sort the score pair according to the scores in descending order + std::stable_sort(score_index_vec.begin(), score_index_vec.end(), + SortScorePairDescend); + + // // Keep top_k scores if needed. + // if (top_k > 0 && top_k < (int)score_index_vec.size()) + // { + // score_index_vec.resize(top_k); + // } +} + +void NMSBoxes(const std::vector det_result, + const float score_threshold, const float nms_threshold, + std::vector &indices) { + int a = 1; + // Get top_k scores (with corresponding indices). + std::vector > score_index_vec; + GetMaxScoreIndex(det_result, score_threshold, score_index_vec); + + // Do nms + indices.clear(); + for (size_t i = 0; i < score_index_vec.size(); ++i) { + const int idx = score_index_vec[i].second; + bool keep = true; + for (int k = 0; k < (int) indices.size() && keep; ++k) { + const int kept_idx = indices[k]; + float overlap = RectOverlap(det_result[idx], det_result[kept_idx]); + keep = overlap <= nms_threshold; + } + if (keep) + indices.push_back(idx); + } +} diff --git a/deploy/cpp_shitu/include/object_detector.h b/deploy/cpp_shitu/include/object_detector.h new file mode 100644 index 0000000000000000000000000000000000000000..5bfc56253b1845a50f3b6b093db314e97505cfef --- /dev/null +++ b/deploy/cpp_shitu/include/object_detector.h @@ -0,0 +1,138 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include +#include +#include + +#include +#include +#include + +#include "paddle_inference_api.h" // NOLINT + +#include "include/preprocess_op_det.h" +#include "include/yaml_config.h" + +using namespace paddle_infer; + +namespace Detection { +// Object Detection Result + struct ObjectResult { + // Rectangle coordinates of detected object: left, right, top, down + std::vector rect; + // Class id of detected object + int class_id; + // Confidence of detected object + float confidence; + }; + +// Generate visualization colormap for each class + std::vector GenerateColorMap(int num_class); + +// Visualiztion Detection Result + cv::Mat VisualizeResult(const cv::Mat &img, + const std::vector &results, + const std::vector &lables, + const std::vector &colormap, const bool is_rbox); + + class ObjectDetector { + public: + explicit ObjectDetector(const YAML::Node &config_file) { + this->use_gpu_ = config_file["Global"]["use_gpu"].as(); + if (config_file["Global"]["gpu_id"].IsDefined()) + this->gpu_id_ = config_file["Global"]["gpu_id"].as(); + this->gpu_mem_ = config_file["Global"]["gpu_mem"].as(); + this->cpu_math_library_num_threads_ = + config_file["Global"]["cpu_num_threads"].as(); + this->use_mkldnn_ = config_file["Global"]["enable_mkldnn"].as(); + this->use_tensorrt_ = config_file["Global"]["use_tensorrt"].as(); + this->use_fp16_ = config_file["Global"]["use_fp16"].as(); + this->model_dir_ = + config_file["Global"]["det_inference_model_dir"].as(); + this->threshold_ = config_file["Global"]["threshold"].as(); + this->max_det_results_ = config_file["Global"]["max_det_results"].as(); + this->image_shape_ = + config_file["Global"]["image_shape"].as < std::vector < int >> (); + this->label_list_ = + config_file["Global"]["labe_list"].as < std::vector < std::string >> (); + this->ir_optim_ = config_file["Global"]["ir_optim"].as(); + this->batch_size_ = config_file["Global"]["batch_size"].as(); + + preprocessor_.Init(config_file["DetPreProcess"]["transform_ops"]); + LoadModel(model_dir_, batch_size_, run_mode); + } + + // Load Paddle inference model + void LoadModel(const std::string &model_dir, const int batch_size = 1, + const std::string &run_mode = "fluid"); + + // Run predictor + void Predict(const std::vector imgs, const int warmup = 0, + const int repeats = 1, + std::vector *result = nullptr, + std::vector *bbox_num = nullptr, + std::vector *times = nullptr); + + const std::vector &GetLabelList() const { + return this->label_list_; + } + + const float &GetThreshold() const { return this->threshold_; } + + private: + bool use_gpu_ = true; + int gpu_id_ = 0; + int gpu_mem_ = 800; + int cpu_math_library_num_threads_ = 6; + std::string run_mode = "fluid"; + bool use_mkldnn_ = false; + bool use_tensorrt_ = false; + bool batch_size_ = 1; + bool use_fp16_ = false; + std::string model_dir_; + float threshold_ = 0.5; + float max_det_results_ = 5; + std::vector image_shape_ = {3, 640, 640}; + std::vector label_list_; + bool ir_optim_ = true; + bool det_permute_ = true; + bool det_postprocess_ = true; + int min_subgraph_size_ = 30; + bool use_dynamic_shape_ = false; + int trt_min_shape_ = 1; + int trt_max_shape_ = 1280; + int trt_opt_shape_ = 640; + bool trt_calib_mode_ = false; + + // Preprocess image and copy data to input buffer + void Preprocess(const cv::Mat &image_mat); + + // Postprocess result + void Postprocess(const std::vector mats, + std::vector *result, std::vector bbox_num, + bool is_rbox); + + std::shared_ptr predictor_; + Preprocessor preprocessor_; + ImageBlob inputs_; + std::vector output_data_; + std::vector out_bbox_num_data_; + }; + +} // namespace Detection diff --git a/deploy/cpp_shitu/include/preprocess_op.h b/deploy/cpp_shitu/include/preprocess_op.h new file mode 100644 index 0000000000000000000000000000000000000000..db4c6b2c5aa072abcd665ec0c9428bfe821cb842 --- /dev/null +++ b/deploy/cpp_shitu/include/preprocess_op.h @@ -0,0 +1,57 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "opencv2/core.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/imgproc.hpp" +#include +#include +#include +#include +#include + +#include +#include +#include + +using namespace std; + +namespace Feature { + + class Normalize { + public: + virtual void Run(cv::Mat *im, const std::vector &mean, + const std::vector &std, float scale); + }; + +// RGB -> CHW + class Permute { + public: + virtual void Run(const cv::Mat *im, float *data); + }; + + class CenterCropImg { + public: + virtual void Run(cv::Mat &im, const int crop_size = 224); + }; + + class ResizeImg { + public: + virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len, + int size = 0); + }; + +} // namespace Feature diff --git a/deploy/cpp_shitu/include/preprocess_op_det.h b/deploy/cpp_shitu/include/preprocess_op_det.h new file mode 100644 index 0000000000000000000000000000000000000000..cd663409caf8334cbd8d120d2a6fd453f7045004 --- /dev/null +++ b/deploy/cpp_shitu/include/preprocess_op_det.h @@ -0,0 +1,158 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include + +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +namespace Detection { + +// Object for storing all preprocessed data + class ImageBlob { + public: + // image width and height + std::vector im_shape_; + // Buffer for image data after preprocessing + std::vector im_data_; + // in net data shape(after pad) + std::vector in_net_shape_; + // Evaluation image width and height + // std::vector eval_im_size_f_; + // Scale factor for image size to origin image size + std::vector scale_factor_; + }; + +// Abstraction of preprocessing opration class + class PreprocessOp { + public: + virtual void Init(const YAML::Node &item) = 0; + + virtual void Run(cv::Mat *im, ImageBlob *data) = 0; + }; + + class InitInfo : public PreprocessOp { + public: + virtual void Init(const YAML::Node &item) {} + + virtual void Run(cv::Mat *im, ImageBlob *data); + }; + + class NormalizeImage : public PreprocessOp { + public: + virtual void Init(const YAML::Node &item) { + mean_ = item["mean"].as < std::vector < float >> (); + scale_ = item["std"].as < std::vector < float >> (); + is_scale_ = item["is_scale"].as(); + } + + virtual void Run(cv::Mat *im, ImageBlob *data); + + private: + // CHW or HWC + std::vector mean_; + std::vector scale_; + bool is_scale_; + }; + + class Permute : public PreprocessOp { + public: + virtual void Init(const YAML::Node &item) {} + + virtual void Run(cv::Mat *im, ImageBlob *data); + }; + + class Resize : public PreprocessOp { + public: + virtual void Init(const YAML::Node &item) { + interp_ = item["interp"].as(); + // max_size_ = item["target_size"].as(); + keep_ratio_ = item["keep_ratio"].as(); + target_size_ = item["target_size"].as < std::vector < int >> (); + } + + // Compute best resize scale for x-dimension, y-dimension + std::pair GenerateScale(const cv::Mat &im); + + virtual void Run(cv::Mat *im, ImageBlob *data); + + private: + int interp_ = 2; + bool keep_ratio_; + std::vector target_size_; + std::vector in_net_shape_; + }; + +// Models with FPN need input shape % stride == 0 + class PadStride : public PreprocessOp { + public: + virtual void Init(const YAML::Node &item) { + stride_ = item["stride"].as(); + } + + virtual void Run(cv::Mat *im, ImageBlob *data); + + private: + int stride_; + }; + + class Preprocessor { + public: + void Init(const YAML::Node &config_node) { + // initialize image info at first + ops_["InitInfo"] = std::make_shared(); + for (int i = 0; i < config_node.size(); ++i) { + if (config_node[i]["DetResize"].IsDefined()) { + ops_["Resize"] = std::make_shared(); + ops_["Resize"]->Init(config_node[i]["DetResize"]); + } + + if (config_node[i]["DetNormalizeImage"].IsDefined()) { + ops_["NormalizeImage"] = std::make_shared(); + ops_["NormalizeImage"]->Init(config_node[i]["DetNormalizeImage"]); + } + + if (config_node[i]["DetPermute"].IsDefined()) { + ops_["Permute"] = std::make_shared(); + ops_["Permute"]->Init(config_node[i]["DetPermute"]); + } + + if (config_node[i]["DetPadStrid"].IsDefined()) { + ops_["PadStride"] = std::make_shared(); + ops_["PadStride"]->Init(config_node[i]["DetPadStrid"]); + } + } + } + + void Run(cv::Mat *im, ImageBlob *data); + + public: + static const std::vector RUN_ORDER; + + private: + std::unordered_map > ops_; + }; + +} // namespace Detection diff --git a/deploy/cpp_shitu/include/vector_search.h b/deploy/cpp_shitu/include/vector_search.h new file mode 100644 index 0000000000000000000000000000000000000000..4b354f78d10a16db3ab642deb614028bdc0b17e1 --- /dev/null +++ b/deploy/cpp_shitu/include/vector_search.h @@ -0,0 +1,70 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#ifdef WIN32 +#define OS_PATH_SEP "\\" +#else +#define OS_PATH_SEP "/" +#endif + +#include "yaml-cpp/yaml.h" +#include +#include +#include +#include + +struct SearchResult { + std::vector I; + std::vector D; + int return_k; +}; + +class VectorSearch { +public: + explicit VectorSearch(const YAML::Node &config_file) { + // IndexProcess + this->index_dir = + config_file["IndexProcess"]["index_dir"].as(); + this->return_k = config_file["IndexProcess"]["return_k"].as(); + this->score_thres = config_file["IndexProcess"]["score_thres"].as(); + this->max_query_number = + config_file["Global"]["max_det_results"].as() + 1; + LoadIdMap(); + LoadIndexFile(); + this->I.resize(this->return_k * this->max_query_number); + this->D.resize(this->return_k * this->max_query_number); + }; + + void LoadIdMap(); + + void LoadIndexFile(); + + const SearchResult &Search(float *feature, int query_number); + + const std::string &GetLabel(faiss::Index::idx_t ind); + + const float &GetThreshold() { return this->score_thres; } + +private: + std::string index_dir; + int return_k = 5; + float score_thres = 0.5; + std::map id_map; + faiss::Index *index; + int max_query_number = 6; + std::vector D; + std::vector I; + SearchResult sr; +}; diff --git a/deploy/cpp_shitu/include/yaml_config.h b/deploy/cpp_shitu/include/yaml_config.h new file mode 100644 index 0000000000000000000000000000000000000000..78243e2fee5fa3f739e8921d992ac4fe76bf1246 --- /dev/null +++ b/deploy/cpp_shitu/include/yaml_config.h @@ -0,0 +1,58 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#ifdef WIN32 +#define OS_PATH_SEP "\\" +#else +#define OS_PATH_SEP "/" +#endif + +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include "opencv2/core.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/imgproc.hpp" +#include "yaml-cpp/yaml.h" + + +class YamlConfig { +public: + explicit YamlConfig(const std::string &path) { + config_file = ReadYamlConfig(path); + } + + static std::vector ReadDict(const std::string &path); + + static std::map ReadIndexId(const std::string &path); + + static YAML::Node ReadYamlConfig(const std::string &path); + + void PrintConfigInfo(); + + YAML::Node config_file; +}; diff --git a/deploy/cpp_shitu/readme.md b/deploy/cpp_shitu/readme.md new file mode 100644 index 0000000000000000000000000000000000000000..22c3b6eb22e7b94dbc0b5f21470bd87359262812 --- /dev/null +++ b/deploy/cpp_shitu/readme.md @@ -0,0 +1,308 @@ +# 服务器端C++预测 + +本教程将介绍在服务器端部署PP-ShiTU的详细步骤。 + + +## 1. 准备环境 + +### 运行准备 +- Linux环境,推荐使用ubuntu docker。 + +### 1.1 升级cmake + +由于依赖库编译需要较高版本的cmake,因此,第一步首先将cmake升级。 + +- 下载最新版本cmake + +```shell +# 当前版本最新为3.22.0,根据实际情况自行下载,建议最新版本 +wget https://github.com/Kitware/CMake/releases/download/v3.22.0/cmake-3.22.0.tar.gz +tar xf cmake-3.22.0.tar.gz +``` + +最终可以在当前目录下看到`cmake-3.22.0/`的文件夹。 + +- 编译cmake,首先设置came源码路径(`root_path`)以及安装路径(`install_path`),`root_path`为下载的came源码路径,`install_path`为came的安装路径。在本例中,源码路径即为当前目录下的`cmake-3.22.0/`。 + +```shell +cd ./cmake-3.22.0 +export root_path=$PWD +export install_path=${root_path}/cmake +``` + +- 然后在cmake源码路径下,按照下面的方式进行编译 + +```shell +./bootstrap --prefix=${install_path} +make -j +make install +``` + +- 设置环境变量 + +```shell +export PATH=${install_path}/bin:$PATH +#检查是否正常使用 +cmake --version +``` + +此时,cmake就可以使用了 + +### 1.2 编译opencv库 + +* 首先需要从opencv官网上下载在Linux环境下源码编译的包,以3.4.7版本为例,下载及解压缩命令如下: + +``` +wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz +tar -xvf 3.4.7.tar.gz +``` + +最终可以在当前目录下看到`opencv-3.4.7/`的文件夹。 + +* 编译opencv,首先设置opencv源码路径(`root_path`)以及安装路径(`install_path`),`root_path`为下载的opencv源码路径,`install_path`为opencv的安装路径。在本例中,源码路径即为当前目录下的`opencv-3.4.7/`。 + +```shell +cd ./opencv-3.4.7 +export root_path=$PWD +export install_path=${root_path}/opencv3 +``` + +* 然后在opencv源码路径下,按照下面的方式进行编译。 + +```shell +rm -rf build +mkdir build +cd build + +cmake .. \ + -DCMAKE_INSTALL_PREFIX=${install_path} \ + -DCMAKE_BUILD_TYPE=Release \ + -DBUILD_SHARED_LIBS=OFF \ + -DWITH_IPP=OFF \ + -DBUILD_IPP_IW=OFF \ + -DWITH_LAPACK=OFF \ + -DWITH_EIGEN=OFF \ + -DCMAKE_INSTALL_LIBDIR=lib64 \ + -DWITH_ZLIB=ON \ + -DBUILD_ZLIB=ON \ + -DWITH_JPEG=ON \ + -DBUILD_JPEG=ON \ + -DWITH_PNG=ON \ + -DBUILD_PNG=ON \ + -DWITH_TIFF=ON \ + -DBUILD_TIFF=ON + +make -j +make install +``` + +* `make install`完成之后,会在该文件夹下生成opencv头文件和库文件,用于后面的PaddleClas代码编译。 + +以opencv3.4.7版本为例,最终在安装路径下的文件结构如下所示。**注意**:不同的opencv版本,下述的文件结构可能不同。 + +``` +opencv3/ +|-- bin +|-- include +|-- lib64 +|-- share +``` + +### 1.3 下载或者编译Paddle预测库 + +* 有2种方式获取Paddle预测库,下面进行详细介绍。 + +#### 1.3.1 预测库源码编译 +* 如果希望获取最新预测库特性,可以从Paddle github上克隆最新代码,源码编译预测库。 +* 可以参考[Paddle预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16)的说明,从github上获取Paddle代码,然后进行编译,生成最新的预测库。使用git获取代码方法如下。 + +```shell +git clone https://github.com/PaddlePaddle/Paddle.git +``` + +* 进入Paddle目录后,使用如下方法编译。 + +```shell +rm -rf build +mkdir build +cd build + +cmake .. \ + -DWITH_CONTRIB=OFF \ + -DWITH_MKL=ON \ + -DWITH_MKLDNN=ON \ + -DWITH_TESTING=OFF \ + -DCMAKE_BUILD_TYPE=Release \ + -DWITH_INFERENCE_API_TEST=OFF \ + -DON_INFER=ON \ + -DWITH_PYTHON=ON +make -j +make inference_lib_dist +``` + +更多编译参数选项可以参考[Paddle C++预测库官网](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#id16)。 + + +* 编译完成之后,可以在`build/paddle_inference_install_dir/`文件下看到生成了以下文件及文件夹。 + +``` +build/paddle_inference_install_dir/ +|-- CMakeCache.txt +|-- paddle +|-- third_party +|-- version.txt +``` + +其中`paddle`就是之后进行C++预测时所需的Paddle库,`version.txt`中包含当前预测库的版本信息。 + +#### 1.3.2 直接下载安装 + +* [Paddle预测库官网](https://paddle-inference.readthedocs.io/en/latest/user_guides/download_lib.html)上提供了不同cuda版本的Linux预测库,可以在官网查看并选择合适的预测库版本,注意必须选择`develop`版本。 + + 以`https://paddle-inference-lib.bj.bcebos.com/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddle_inference.tgz`的`develop`版本为例,使用下述命令下载并解压: + + +```shell +wget https://paddle-inference-lib.bj.bcebos.com/2.1.1-gpu-cuda10.2-cudnn8.1-mkl-gcc8.2/paddle_inference.tgz + +tar -xvf paddle_inference.tgz +``` + + +最终会在当前的文件夹中生成`paddle_inference/`的子文件夹。 + +### 1.4 安装faiss库 + +```shell + # 下载 faiss + git clone https://github.com/facebookresearch/faiss.git + cd faiss + export faiss_install_path=$PWD/faiss_install + cmake -B build . -DFAISS_ENABLE_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=${faiss_install_path} + make -C build -j faiss + make -C build install +``` + +在安装`faiss`前,请安装`openblas`,`ubuntu`系统中安装命令如下: + +```shell +apt-get install libopenblas-dev +``` + +注意本教程以安装faiss cpu版本为例,安装时请参考[faiss](https://github.com/facebookresearch/faiss)官网文档,根据需求自行安装。 + +## 2 代码编译 + +### 2.2 编译PaddleClas C++预测demo + +编译命令如下,其中Paddle C++预测库、opencv等其他依赖库的地址需要换成自己机器上的实际地址。同时,编译过程中需要下载编译`yaml-cpp`等C++库,请保持联网环境。 + + +```shell +sh tools/build.sh +``` + +具体地,`tools/build.sh`中内容如下,请根据具体路径修改。 + +```shell +OPENCV_DIR=${opencv_install_dir} +LIB_DIR=${paddle_inference_dir} +CUDA_LIB_DIR=/usr/local/cuda/lib64 +CUDNN_LIB_DIR=/usr/lib/x86_64-linux-gnu/ +FAISS_DIR=${faiss_install_dir} +FAISS_WITH_MKL=OFF + +BUILD_DIR=build +rm -rf ${BUILD_DIR} +mkdir ${BUILD_DIR} +cd ${BUILD_DIR} +cmake .. \ + -DPADDLE_LIB=${LIB_DIR} \ + -DWITH_MKL=ON \ + -DWITH_GPU=OFF \ + -DWITH_STATIC_LIB=OFF \ + -DUSE_TENSORRT=OFF \ + -DOPENCV_DIR=${OPENCV_DIR} \ + -DCUDNN_LIB=${CUDNN_LIB_DIR} \ + -DCUDA_LIB=${CUDA_LIB_DIR} \ + -DFAISS_DIR=${FAISS_DIR} \ + -DFAISS_WITH_MKL=${FAISS_WITH_MKL} + +make -j +``` + +上述命令中, + +* `OPENCV_DIR`为opencv编译安装的地址(本例中为`opencv-3.4.7/opencv3`文件夹的路径); +* `LIB_DIR`为下载的Paddle预测库(`paddle_inference`文件夹),或编译生成的Paddle预测库(`build/paddle_inference_install_dir`文件夹)的路径; +* `CUDA_LIB_DIR`为cuda库文件地址,在docker中为`/usr/local/cuda/lib64`; +* `CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`。 +* `TENSORRT_DIR`是tensorrt库文件地址,在dokcer中为`/usr/local/TensorRT6-cuda10.0-cudnn7/`,TensorRT需要结合GPU使用。 +* `FAISS_DIR`是faiss的安装地址 + * `FAISS_WITH_MKL`是指在编译faiss的过程中,是否使用了mkldnn,本文档中编译faiss,没有使用,而使用了openblas,故设置为`OFF`,若使用了mkldnn,则为`ON`. + + +在执行上述命令,编译完成之后,会在当前路径下生成`build`文件夹,其中生成一个名为`pp_shitu`的可执行文件。 + +## 3 运行demo + +- 请参考[识别快速开始文档](../../docs/zh_CN/quick_start/quick_start_recognition.md),下载好相应的 轻量级通用主体检测模型、轻量级通用识别模型及瓶装饮料测试数据并解压。 + + ```shell + mkdir models + cd models + wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar + tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar + wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar + tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar + cd .. + + mkdir data + cd data + wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar + tar -xf drink_dataset_v1.0.tar + cd .. + ``` + +- 将相应的yaml文件拷到`test`文件夹下 + + ```shell + cp ../configs/inference_drink.yaml . + ``` + +- 将`inference_drink.yaml`中的相对路径,改成基于本目录的路径或者绝对路径。涉及到的参数有 + + - Global.infer_imgs :此参数可以是具体的图像地址,也可以是图像集所在的目录 + - Global.det_inference_model_dir : 检测模型存储目录 + - Global.rec_inference_model_dir : 识别模型存储目录 + - IndexProcess.index_dir : 检索库的存储目录,在示例中,检索库在下载的demo数据中。 + +- 字典转换 + + 由于python的检索库的字典,使用`pickle`进行的序列化存储,导致C++不方便读取,因此进行转换 + + ```shell + python tools/transform_id_map.py -c inference_drink.yaml + ``` + + 转换成功后,在`IndexProcess.index_dir`目录下生成`id_map.txt`,方便c++ 读取。 + +- 执行程序 + + ```shell + ./build/pp_shitu -c inference_drink.yaml + # or + ./build/pp_shitu -config inference_drink.yaml + ``` + + 若对图像集进行检索,则可能得到,如下结果。注意,此结果只做展示,具体以实际运行结果为准。 + + 同时,需注意的是,由于opencv 版本问题,会导致图像在预处理的过程中,resize产生细微差别,导致python 和c++结果,轻微不同,如bbox相差几个像素,检索结果小数点后3位diff等。但不会改变最终检索label。 + + ![](../../docs/images/quick_start/shitu_c++_result.png) + +## 4 使用自己模型 + +使用自己训练的模型,可以参考[模型导出](../../docs/zh_CN/inference_deployment/export_model.md),导出`inference model`,用于模型预测。 + +同时注意修改`yaml`文件中具体参数。 diff --git a/deploy/cpp_shitu/src/feature_extracter.cpp b/deploy/cpp_shitu/src/feature_extracter.cpp new file mode 100644 index 0000000000000000000000000000000000000000..9588ff57ede8f23824957ea8375b2ad2ef8d83ae --- /dev/null +++ b/deploy/cpp_shitu/src/feature_extracter.cpp @@ -0,0 +1,119 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include + +namespace Feature { + + void FeatureExtracter::LoadModel(const std::string &model_path, + const std::string ¶ms_path) { + paddle_infer::Config config; + config.SetModel(model_path, params_path); + + if (this->use_gpu_) { + config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); + if (this->use_tensorrt_) { + config.EnableTensorRtEngine( + 1 << 20, 1, 3, + this->use_fp16_ ? paddle_infer::Config::Precision::kHalf + : paddle_infer::Config::Precision::kFloat32, + false, false); + } + } else { + config.DisableGpu(); + if (this->use_mkldnn_) { + config.EnableMKLDNN(); + // cache 10 different shapes for mkldnn to avoid memory leak + config.SetMkldnnCacheCapacity(10); + } + config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); + } + + config.SwitchUseFeedFetchOps(false); + // true for multiple input + config.SwitchSpecifyInputNames(true); + + config.SwitchIrOptim(true); + + config.EnableMemoryOptim(); + config.DisableGlogInfo(); + + this->predictor_ = CreatePredictor(config); + } + + void FeatureExtracter::Run(cv::Mat &img, std::vector &out_data, + std::vector ×) { + cv::Mat resize_img; + std::vector time; + + auto preprocess_start = std::chrono::system_clock::now(); + this->resize_op_.Run(img, resize_img, this->resize_short_, + this->resize_size_); + + this->normalize_op_.Run(&resize_img, this->mean_, this->std_, this->scale_); + std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f); + this->permute_op_.Run(&resize_img, input.data()); + + auto input_names = this->predictor_->GetInputNames(); + auto input_t = this->predictor_->GetInputHandle(input_names[0]); + input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); + auto preprocess_end = std::chrono::system_clock::now(); + + auto infer_start = std::chrono::system_clock::now(); + input_t->CopyFromCpu(input.data()); + this->predictor_->Run(); + + auto output_names = this->predictor_->GetOutputNames(); + auto output_t = this->predictor_->GetOutputHandle(output_names[0]); + std::vector output_shape = output_t->shape(); + int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1, + std::multiplies()); + + out_data.resize(out_num); + output_t->CopyToCpu(out_data.data()); + auto infer_end = std::chrono::system_clock::now(); + + auto postprocess_start = std::chrono::system_clock::now(); + if (this->feature_norm) + FeatureNorm(out_data); + auto postprocess_end = std::chrono::system_clock::now(); + + std::chrono::duration preprocess_diff = + preprocess_end - preprocess_start; + time.push_back(double(preprocess_diff.count())); + std::chrono::duration inference_diff = infer_end - infer_start; + double inference_cost_time = double(inference_diff.count()); + time.push_back(inference_cost_time); + // std::chrono::duration postprocess_diff = + // postprocess_end - postprocess_start; + time.push_back(0); + + // std::cout << "result: " << std::endl; + // std::cout << "\tclass id: " << maxPosition << std::endl; + // std::cout << std::fixed << std::setprecision(10) + // << "\tscore: " << double(out_data[maxPosition]) << std::endl; + times[0] += time[0]; + times[1] += time[1]; + times[2] += time[2]; + } + + void FeatureExtracter::FeatureNorm(std::vector &featuer) { + float featuer_sqrt = std::sqrt(std::inner_product( + featuer.begin(), featuer.end(), featuer.begin(), 0.0f)); + for (int i = 0; i < featuer.size(); ++i) + featuer[i] /= featuer_sqrt; + } +} // namespace Feature diff --git a/deploy/cpp_shitu/src/main.cpp b/deploy/cpp_shitu/src/main.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d89ba14d5426776683f43c5bc77f85e166f0168d --- /dev/null +++ b/deploy/cpp_shitu/src/main.cpp @@ -0,0 +1,298 @@ +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "opencv2/core.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/imgproc.hpp" +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace cv; + +DEFINE_string(config, +"", "Path of yaml file"); +DEFINE_string(c, +"", "Path of yaml file"); + +void DetPredictImage(const std::vector &batch_imgs, + const std::vector &all_img_paths, + const int batch_size, Detection::ObjectDetector *det, + std::vector &im_result, + std::vector &im_bbox_num, std::vector &det_t, + const bool visual_det = false, + const bool run_benchmark = false, + const std::string &output_dir = "output") { + int steps = ceil(float(all_img_paths.size()) / batch_size); + // printf("total images = %d, batch_size = %d, total steps = %d\n", + // all_img_paths.size(), batch_size, steps); + for (int idx = 0; idx < steps; idx++) { + int left_image_cnt = all_img_paths.size() - idx * batch_size; + if (left_image_cnt > batch_size) { + left_image_cnt = batch_size; + } + // for (int bs = 0; bs < left_image_cnt; bs++) { + // std::string image_file_path = all_img_paths.at(idx * batch_size+bs); + // cv::Mat im = cv::imread(image_file_path, 1); + // batch_imgs.insert(batch_imgs.end(), im); + // } + + // Store all detected result + std::vector result; + std::vector bbox_num; + std::vector det_times; + bool is_rbox = false; + if (run_benchmark) { + det->Predict(batch_imgs, 10, 10, &result, &bbox_num, &det_times); + } else { + det->Predict(batch_imgs, 0, 1, &result, &bbox_num, &det_times); + // get labels and colormap + auto labels = det->GetLabelList(); + auto colormap = Detection::GenerateColorMap(labels.size()); + + int item_start_idx = 0; + for (int i = 0; i < left_image_cnt; i++) { + cv::Mat im = batch_imgs[i]; + int detect_num = 0; + + for (int j = 0; j < bbox_num[i]; j++) { + Detection::ObjectResult item = result[item_start_idx + j]; + if (item.confidence < det->GetThreshold() || item.class_id == -1) { + continue; + } + detect_num += 1; + im_result.push_back(item); + if (visual_det) { + if (item.rect.size() > 6) { + is_rbox = true; + printf( + "class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", + item.class_id, item.confidence, item.rect[0], item.rect[1], + item.rect[2], item.rect[3], item.rect[4], item.rect[5], + item.rect[6], item.rect[7]); + } else { + printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", + item.class_id, item.confidence, item.rect[0], item.rect[1], + item.rect[2], item.rect[3]); + } + } + } + im_bbox_num.push_back(detect_num); + item_start_idx = item_start_idx + bbox_num[i]; + + // Visualization result + if (visual_det) { + std::cout << all_img_paths.at(idx * batch_size + i) + << " The number of detected box: " << detect_num + << std::endl; + cv::Mat vis_img = Detection::VisualizeResult(im, im_result, labels, + colormap, is_rbox); + std::vector compression_params; + compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); + compression_params.push_back(95); + std::string output_path(output_dir); + if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) { + output_path += OS_PATH_SEP; + } + std::string image_file_path = all_img_paths.at(idx * batch_size + i); + output_path += + image_file_path.substr(image_file_path.find_last_of('/') + 1); + cv::imwrite(output_path, vis_img, compression_params); + printf("Visualized output saved as %s\n", output_path.c_str()); + } + } + } + det_t[0] += det_times[0]; + det_t[1] += det_times[1]; + det_t[2] += det_times[2]; + } +} + +void PrintResult(std::string &img_path, + std::vector &det_result, + std::vector &indeices, VectorSearch &vector_search, + SearchResult &search_result) { + printf("%s:\n", img_path.c_str()); + for (int i = 0; i < indeices.size(); ++i) { + int t = indeices[i]; + printf("\tresult%d: bbox[%d, %d, %d, %d], score: %f, label: %s\n", i, + det_result[t].rect[0], det_result[t].rect[1], det_result[t].rect[2], + det_result[t].rect[3], det_result[t].confidence, + vector_search.GetLabel(search_result.I[search_result.return_k * t]) + .c_str()); + } +} + +int main(int argc, char **argv) { + google::ParseCommandLineFlags(&argc, &argv, true); + std::string yaml_path = ""; + if (FLAGS_config == "" && FLAGS_c == "") { + std::cerr << "[ERROR] usage: " << std::endl + << argv[0] << " -c $yaml_path" << std::endl + << "or:" << std::endl + << argv[0] << " -config $yaml_path" << std::endl; + exit(1); + } else if (FLAGS_config != "") { + yaml_path = FLAGS_config; + } else { + yaml_path = FLAGS_c; + } + + YamlConfig config(yaml_path); + config.PrintConfigInfo(); + + // initialize detector, rec_Model, vector_search + Feature::FeatureExtracter feature_extracter(config.config_file); + Detection::ObjectDetector detector(config.config_file); + VectorSearch searcher(config.config_file); + + // config + const int batch_size = config.config_file["Global"]["batch_size"].as(); + bool visual_det = false; + if (config.config_file["Global"]["visual_det"].IsDefined()) { + visual_det = config.config_file["Global"]["visual_det"].as(); + } + bool run_benchmark = false; + if (config.config_file["Global"]["benchmark"].IsDefined()) { + run_benchmark = config.config_file["Global"]["benchmark"].as(); + } + int max_det_results = 5; + if (config.config_file["Global"]["max_det_results"].IsDefined()) { + max_det_results = config.config_file["Global"]["max_det_results"].as(); + } + float rec_nms_thresold = 0.05; + if (config.config_file["Global"]["rec_nms_thresold"].IsDefined()) { + rec_nms_thresold = + config.config_file["Global"]["rec_nms_thresold"].as(); + } + + // load image_file_path + std::string path = + config.config_file["Global"]["infer_imgs"].as(); + std::vector img_files_list; + if (cv::utils::fs::isDirectory(path)) { + std::vector filenames; + cv::glob(path, filenames); + for (auto f : filenames) { + img_files_list.push_back(f); + } + } else { + img_files_list.push_back(path); + } + std::cout << "img_file_list length: " << img_files_list.size() << std::endl; + // for time log + std::vector cls_times = {0, 0, 0}; + std::vector det_times = {0, 0, 0}; + // for read images + std::vector batch_imgs; + std::vector img_paths; + // for detection + std::vector det_result; + std::vector det_bbox_num; + // for vector search + std::vector features; + std::vector feature; + // for nms + std::vector indeices; + + int warmup_iter = img_files_list.size() > 5 ? 5 : 0; + for (int idx = 0; idx < img_files_list.size(); ++idx) { + std::string img_path = img_files_list[idx]; + cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR); + if (!srcimg.data) { + std::cerr << "[ERROR] image read failed! image path: " << img_path + << "\n"; + exit(-1); + } + cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB); + + batch_imgs.push_back(srcimg); + img_paths.push_back(img_path); + + // step1: get all detection results + DetPredictImage(batch_imgs, img_paths, batch_size, &detector, det_result, + det_bbox_num, det_times, visual_det, run_benchmark); + + // select max_det_results bbox + if (det_result.size() > max_det_results) { + det_result.resize(max_det_results); + } + // step2: add the whole image for recognition to improve recall + Detection::ObjectResult result_whole_img = { + {0, 0, srcimg.cols - 1, srcimg.rows - 1}, 0, 1.0}; + det_result.push_back(result_whole_img); + det_bbox_num[0] = det_result.size() + 1; + + // step3: extract feature for all boxes in an inmage + SearchResult search_result; + for (int j = 0; j < det_result.size(); ++j) { + int w = det_result[j].rect[2] - det_result[j].rect[0]; + int h = det_result[j].rect[3] - det_result[j].rect[1]; + cv::Rect rect(det_result[j].rect[0], det_result[j].rect[1], w, h); + cv::Mat crop_img = srcimg(rect); + feature_extracter.Run(crop_img, feature, cls_times); + features.insert(features.end(), feature.begin(), feature.end()); + } + + // step4: get search result + search_result = searcher.Search(features.data(), det_result.size()); + + // nms for search result + for (int i = 0; i < det_result.size(); ++i) { + det_result[i].confidence = search_result.D[search_result.return_k * i]; + } + NMSBoxes(det_result, searcher.GetThreshold(), rec_nms_thresold, indeices); + + // print result + PrintResult(img_path, det_result, indeices, searcher, search_result); + + // for postprocess + batch_imgs.clear(); + img_paths.clear(); + det_bbox_num.clear(); + det_result.clear(); + feature.clear(); + features.clear(); + indeices.clear(); + } + + std::string presion = "fp32"; + + // if (config.use_fp16) + // presion = "fp16"; + // if (config.benchmark) { + // AutoLogger autolog("Classification", config.use_gpu, config.use_tensorrt, + // config.use_mkldnn, config.cpu_threads, 1, + // "1, 3, 224, 224", presion, cls_times, + // img_files_list.size()); + // autolog.report(); + // } + return 0; +} diff --git a/deploy/cpp_shitu/src/object_detector.cpp b/deploy/cpp_shitu/src/object_detector.cpp new file mode 100644 index 0000000000000000000000000000000000000000..03b02b973076a8d442e106c1ac58f83ee0877cf3 --- /dev/null +++ b/deploy/cpp_shitu/src/object_detector.cpp @@ -0,0 +1,365 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include +// for setprecision +#include "include/object_detector.h" +#include +#include + +using namespace paddle_infer; + +namespace Detection { + +// Load Model and create model predictor + void ObjectDetector::LoadModel(const std::string &model_dir, + const int batch_size, + const std::string &run_mode) { + paddle_infer::Config config; + std::string prog_file = model_dir + OS_PATH_SEP + "inference.pdmodel"; + std::string params_file = model_dir + OS_PATH_SEP + "inference.pdiparams"; + config.SetModel(prog_file, params_file); + if (this->use_gpu_) { + config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); + config.SwitchIrOptim(this->ir_optim_); + // // use tensorrt + // if (run_mode != "fluid") { + // auto precision = paddle_infer::Config::Precision::kFloat32; + // if (run_mode == "trt_fp32") { + // precision = paddle_infer::Config::Precision::kFloat32; + // } + // else if (run_mode == "trt_fp16") { + // precision = paddle_infer::Config::Precision::kHalf; + // } + // else if (run_mode == "trt_int8") { + // precision = paddle_infer::Config::Precision::kInt8; + // } else { + // printf("run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or + // 'trt_int8'"); + // } + // set tensorrt + + if (this->use_tensorrt_) { + config.EnableTensorRtEngine( + 1 << 30, batch_size, this->min_subgraph_size_, + this->use_fp16_ ? paddle_infer::Config::Precision::kHalf + : paddle_infer::Config::Precision::kFloat32, + false, this->trt_calib_mode_); + // set use dynamic shape + if (this->use_dynamic_shape_) { + // set DynamicShsape for image tensor + const std::vector min_input_shape = {1, 3, this->trt_min_shape_, + this->trt_min_shape_}; + const std::vector max_input_shape = {1, 3, this->trt_max_shape_, + this->trt_max_shape_}; + const std::vector opt_input_shape = {1, 3, this->trt_opt_shape_, + this->trt_opt_shape_}; + const std::map > map_min_input_shape = { + {"image", min_input_shape}}; + const std::map > map_max_input_shape = { + {"image", max_input_shape}}; + const std::map > map_opt_input_shape = { + {"image", opt_input_shape}}; + + config.SetTRTDynamicShapeInfo(map_min_input_shape, map_max_input_shape, + map_opt_input_shape); + std::cout << "TensorRT dynamic shape enabled" << std::endl; + } + } + + // } else if (this->device_ == "XPU"){ + // config.EnableXpu(10*1024*1024); + } else { + config.DisableGpu(); + if (this->use_mkldnn_) { + config.EnableMKLDNN(); + // cache 10 different shapes for mkldnn to avoid memory leak + config.SetMkldnnCacheCapacity(10); + } + config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); + } + config.SwitchUseFeedFetchOps(false); + config.SwitchIrOptim(this->ir_optim_); + config.DisableGlogInfo(); + // Memory optimization + config.EnableMemoryOptim(); + predictor_ = std::move(CreatePredictor(config)); + } + +// Visualiztion MaskDetector results + cv::Mat VisualizeResult(const cv::Mat &img, + const std::vector &results, + const std::vector &lables, + const std::vector &colormap, + const bool is_rbox = false) { + cv::Mat vis_img = img.clone(); + for (int i = 0; i < results.size(); ++i) { + // Configure color and text size + std::ostringstream oss; + oss << std::setiosflags(std::ios::fixed) << std::setprecision(4); + oss << lables[results[i].class_id] << " "; + oss << results[i].confidence; + std::string text = oss.str(); + int c1 = colormap[3 * results[i].class_id + 0]; + int c2 = colormap[3 * results[i].class_id + 1]; + int c3 = colormap[3 * results[i].class_id + 2]; + cv::Scalar roi_color = cv::Scalar(c1, c2, c3); + int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL; + double font_scale = 0.5f; + float thickness = 0.5; + cv::Size text_size = + cv::getTextSize(text, font_face, font_scale, thickness, nullptr); + cv::Point origin; + + if (is_rbox) { + // Draw object, text, and background + for (int k = 0; k < 4; k++) { + cv::Point pt1 = cv::Point(results[i].rect[(k * 2) % 8], + results[i].rect[(k * 2 + 1) % 8]); + cv::Point pt2 = cv::Point(results[i].rect[(k * 2 + 2) % 8], + results[i].rect[(k * 2 + 3) % 8]); + cv::line(vis_img, pt1, pt2, roi_color, 2); + } + } else { + int w = results[i].rect[2] - results[i].rect[0]; + int h = results[i].rect[3] - results[i].rect[1]; + cv::Rect roi = cv::Rect(results[i].rect[0], results[i].rect[1], w, h); + // Draw roi object, text, and background + cv::rectangle(vis_img, roi, roi_color, 2); + } + + origin.x = results[i].rect[0]; + origin.y = results[i].rect[1]; + + // Configure text background + cv::Rect text_back = + cv::Rect(results[i].rect[0], results[i].rect[1] - text_size.height, + text_size.width, text_size.height); + // Draw text, and background + cv::rectangle(vis_img, text_back, roi_color, -1); + cv::putText(vis_img, text, origin, font_face, font_scale, + cv::Scalar(255, 255, 255), thickness); + } + return vis_img; + } + + void ObjectDetector::Preprocess(const cv::Mat &ori_im) { + // Clone the image : keep the original mat for postprocess + cv::Mat im = ori_im.clone(); + cv::cvtColor(im, im, cv::COLOR_BGR2RGB); + preprocessor_.Run(&im, &inputs_); + } + + void ObjectDetector::Postprocess(const std::vector mats, + std::vector *result, + std::vector bbox_num, + bool is_rbox = false) { + result->clear(); + int start_idx = 0; + for (int im_id = 0; im_id < mats.size(); im_id++) { + cv::Mat raw_mat = mats[im_id]; + int rh = 1; + int rw = 1; + // if (config_.arch_ == "Face") { + // rh = raw_mat.rows; + // rw = raw_mat.cols; + // } + for (int j = start_idx; j < start_idx + bbox_num[im_id]; j++) { + if (is_rbox) { + // Class id + int class_id = static_cast(round(output_data_[0 + j * 10])); + // Confidence score + float score = output_data_[1 + j * 10]; + int x1 = (output_data_[2 + j * 10] * rw); + int y1 = (output_data_[3 + j * 10] * rh); + int x2 = (output_data_[4 + j * 10] * rw); + int y2 = (output_data_[5 + j * 10] * rh); + int x3 = (output_data_[6 + j * 10] * rw); + int y3 = (output_data_[7 + j * 10] * rh); + int x4 = (output_data_[8 + j * 10] * rw); + int y4 = (output_data_[9 + j * 10] * rh); + + ObjectResult result_item; + result_item.rect = {x1, y1, x2, y2, x3, y3, x4, y4}; + result_item.class_id = class_id; + result_item.confidence = score; + result->push_back(result_item); + } else { + // Class id + int class_id = static_cast(round(output_data_[0 + j * 6])); + // Confidence score + float score = output_data_[1 + j * 6]; + int xmin = (output_data_[2 + j * 6] * rw); + int ymin = (output_data_[3 + j * 6] * rh); + int xmax = (output_data_[4 + j * 6] * rw); + int ymax = (output_data_[5 + j * 6] * rh); + int wd = xmax - xmin; + int hd = ymax - ymin; + + ObjectResult result_item; + result_item.rect = {xmin, ymin, xmax, ymax}; + result_item.class_id = class_id; + result_item.confidence = score; + result->push_back(result_item); + } + } + start_idx += bbox_num[im_id]; + } + } + + void ObjectDetector::Predict(const std::vector imgs, const int warmup, + const int repeats, + std::vector *result, + std::vector *bbox_num, + std::vector *times) { + auto preprocess_start = std::chrono::steady_clock::now(); + int batch_size = imgs.size(); + + // in_data_batch + std::vector in_data_all; + std::vector im_shape_all(batch_size * 2); + std::vector scale_factor_all(batch_size * 2); + + // Preprocess image + for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) { + cv::Mat im = imgs.at(bs_idx); + Preprocess(im); + im_shape_all[bs_idx * 2] = inputs_.im_shape_[0]; + im_shape_all[bs_idx * 2 + 1] = inputs_.im_shape_[1]; + + scale_factor_all[bs_idx * 2] = inputs_.scale_factor_[0]; + scale_factor_all[bs_idx * 2 + 1] = inputs_.scale_factor_[1]; + + // TODO: reduce cost time + in_data_all.insert(in_data_all.end(), inputs_.im_data_.begin(), + inputs_.im_data_.end()); + } + + // Prepare input tensor + auto input_names = predictor_->GetInputNames(); + for (const auto &tensor_name : input_names) { + auto in_tensor = predictor_->GetInputHandle(tensor_name); + if (tensor_name == "image") { + int rh = inputs_.in_net_shape_[0]; + int rw = inputs_.in_net_shape_[1]; + in_tensor->Reshape({batch_size, 3, rh, rw}); + in_tensor->CopyFromCpu(in_data_all.data()); + } else if (tensor_name == "im_shape") { + in_tensor->Reshape({batch_size, 2}); + in_tensor->CopyFromCpu(im_shape_all.data()); + } else if (tensor_name == "scale_factor") { + in_tensor->Reshape({batch_size, 2}); + in_tensor->CopyFromCpu(scale_factor_all.data()); + } + } + + auto preprocess_end = std::chrono::steady_clock::now(); + // Run predictor + // warmup + for (int i = 0; i < warmup; i++) { + predictor_->Run(); + // Get output tensor + auto output_names = predictor_->GetOutputNames(); + auto out_tensor = predictor_->GetOutputHandle(output_names[0]); + std::vector output_shape = out_tensor->shape(); + auto out_bbox_num = predictor_->GetOutputHandle(output_names[1]); + std::vector out_bbox_num_shape = out_bbox_num->shape(); + // Calculate output length + int output_size = 1; + for (int j = 0; j < output_shape.size(); ++j) { + output_size *= output_shape[j]; + } + + if (output_size < 6) { + std::cerr << "[WARNING] No object detected." << std::endl; + } + output_data_.resize(output_size); + out_tensor->CopyToCpu(output_data_.data()); + + int out_bbox_num_size = 1; + for (int j = 0; j < out_bbox_num_shape.size(); ++j) { + out_bbox_num_size *= out_bbox_num_shape[j]; + } + out_bbox_num_data_.resize(out_bbox_num_size); + out_bbox_num->CopyToCpu(out_bbox_num_data_.data()); + } + + bool is_rbox = false; + auto inference_start = std::chrono::steady_clock::now(); + for (int i = 0; i < repeats; i++) { + predictor_->Run(); + // Get output tensor + auto output_names = predictor_->GetOutputNames(); + auto out_tensor = predictor_->GetOutputHandle(output_names[0]); + std::vector output_shape = out_tensor->shape(); + auto out_bbox_num = predictor_->GetOutputHandle(output_names[1]); + std::vector out_bbox_num_shape = out_bbox_num->shape(); + // Calculate output length + int output_size = 1; + for (int j = 0; j < output_shape.size(); ++j) { + output_size *= output_shape[j]; + } + is_rbox = output_shape[output_shape.size() - 1] % 10 == 0; + + if (output_size < 6) { + std::cerr << "[WARNING] No object detected." << std::endl; + } + output_data_.resize(output_size); + out_tensor->CopyToCpu(output_data_.data()); + + int out_bbox_num_size = 1; + for (int j = 0; j < out_bbox_num_shape.size(); ++j) { + out_bbox_num_size *= out_bbox_num_shape[j]; + } + out_bbox_num_data_.resize(out_bbox_num_size); + out_bbox_num->CopyToCpu(out_bbox_num_data_.data()); + } + auto inference_end = std::chrono::steady_clock::now(); + auto postprocess_start = std::chrono::steady_clock::now(); + // Postprocessing result + result->clear(); + Postprocess(imgs, result, out_bbox_num_data_, is_rbox); + bbox_num->clear(); + for (int k = 0; k < out_bbox_num_data_.size(); k++) { + int tmp = out_bbox_num_data_[k]; + bbox_num->push_back(tmp); + } + auto postprocess_end = std::chrono::steady_clock::now(); + + std::chrono::duration preprocess_diff = + preprocess_end - preprocess_start; + times->push_back(double(preprocess_diff.count() * 1000)); + std::chrono::duration inference_diff = inference_end - inference_start; + times->push_back(double(inference_diff.count() / repeats * 1000)); + std::chrono::duration postprocess_diff = + postprocess_end - postprocess_start; + times->push_back(double(postprocess_diff.count() * 1000)); + } + + std::vector GenerateColorMap(int num_class) { + auto colormap = std::vector(3 * num_class, 0); + for (int i = 0; i < num_class; ++i) { + int j = 0; + int lab = i; + while (lab) { + colormap[i * 3] |= (((lab >> 0) & 1) << (7 - j)); + colormap[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)); + colormap[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)); + ++j; + lab >>= 3; + } + } + return colormap; + } + +} // namespace Detection diff --git a/deploy/cpp_shitu/src/preprocess_op.cpp b/deploy/cpp_shitu/src/preprocess_op.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6bf1ec91fcee02699c39a667a0b36998ec6ad04c --- /dev/null +++ b/deploy/cpp_shitu/src/preprocess_op.cpp @@ -0,0 +1,91 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "opencv2/core.hpp" +#include "opencv2/imgcodecs.hpp" +#include "opencv2/imgproc.hpp" +#include "paddle_api.h" +#include "paddle_inference_api.h" +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include + +namespace Feature { + + void Permute::Run(const cv::Mat *im, float *data) { + int rh = im->rows; + int rw = im->cols; + int rc = im->channels(); + for (int i = 0; i < rc; ++i) { + cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i); + } + } + + void Normalize::Run(cv::Mat *im, const std::vector &mean, + const std::vector &std, float scale) { + (*im).convertTo(*im, CV_32FC3, scale); + for (int h = 0; h < im->rows; h++) { + for (int w = 0; w < im->cols; w++) { + im->at(h, w)[0] = + (im->at(h, w)[0] - mean[0]) / std[0]; + im->at(h, w)[1] = + (im->at(h, w)[1] - mean[1]) / std[1]; + im->at(h, w)[2] = + (im->at(h, w)[2] - mean[2]) / std[2]; + } + } + } + + void CenterCropImg::Run(cv::Mat &img, const int crop_size) { + int resize_w = img.cols; + int resize_h = img.rows; + int w_start = int((resize_w - crop_size) / 2); + int h_start = int((resize_h - crop_size) / 2); + cv::Rect rect(w_start, h_start, crop_size, crop_size); + img = img(rect); + } + + void ResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, + int resize_short_size, int size) { + int resize_h = 0; + int resize_w = 0; + if (size > 0) { + resize_h = size; + resize_w = size; + } else { + int w = img.cols; + int h = img.rows; + + float ratio = 1.f; + if (h < w) { + ratio = float(resize_short_size) / float(h); + } else { + ratio = float(resize_short_size) / float(w); + } + resize_h = round(float(h) * ratio); + resize_w = round(float(w) * ratio); + } + cv::resize(img, resize_img, cv::Size(resize_w, resize_h)); + } + +} // namespace Feature diff --git a/deploy/cpp_shitu/src/preprocess_op_det.cpp b/deploy/cpp_shitu/src/preprocess_op_det.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e32b03a47595245cc64a889c0bad38241ac73683 --- /dev/null +++ b/deploy/cpp_shitu/src/preprocess_op_det.cpp @@ -0,0 +1,130 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include + +#include "include/preprocess_op_det.h" + +namespace Detection { + + void InitInfo::Run(cv::Mat *im, ImageBlob *data) { + data->im_shape_ = {static_cast(im->rows), + static_cast(im->cols)}; + data->scale_factor_ = {1., 1.}; + data->in_net_shape_ = {static_cast(im->rows), + static_cast(im->cols)}; + } + + void NormalizeImage::Run(cv::Mat *im, ImageBlob *data) { + double e = 1.0; + if (is_scale_) { + e /= 255.0; + } + (*im).convertTo(*im, CV_32FC3, e); + for (int h = 0; h < im->rows; h++) { + for (int w = 0; w < im->cols; w++) { + im->at(h, w)[0] = + (im->at(h, w)[0] - mean_[0]) / scale_[0]; + im->at(h, w)[1] = + (im->at(h, w)[1] - mean_[1]) / scale_[1]; + im->at(h, w)[2] = + (im->at(h, w)[2] - mean_[2]) / scale_[2]; + } + } + } + + void Permute::Run(cv::Mat *im, ImageBlob *data) { + int rh = im->rows; + int rw = im->cols; + int rc = im->channels(); + (data->im_data_).resize(rc * rh * rw); + float *base = (data->im_data_).data(); + for (int i = 0; i < rc; ++i) { + cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i); + } + } + + void Resize::Run(cv::Mat *im, ImageBlob *data) { + auto resize_scale = GenerateScale(*im); + data->im_shape_ = {static_cast(im->cols * resize_scale.first), + static_cast(im->rows * resize_scale.second)}; + data->in_net_shape_ = {static_cast(im->cols * resize_scale.first), + static_cast(im->rows * resize_scale.second)}; + cv::resize(*im, *im, cv::Size(), resize_scale.first, resize_scale.second, + interp_); + data->im_shape_ = { + static_cast(im->rows), static_cast(im->cols), + }; + data->scale_factor_ = { + resize_scale.second, resize_scale.first, + }; + } + + std::pair Resize::GenerateScale(const cv::Mat &im) { + std::pair resize_scale; + int origin_w = im.cols; + int origin_h = im.rows; + + if (keep_ratio_) { + int im_size_max = std::max(origin_w, origin_h); + int im_size_min = std::min(origin_w, origin_h); + int target_size_max = + *std::max_element(target_size_.begin(), target_size_.end()); + int target_size_min = + *std::min_element(target_size_.begin(), target_size_.end()); + double scale_min = + static_cast(target_size_min) / static_cast(im_size_min); + double scale_max = + static_cast(target_size_max) / static_cast(im_size_max); + double scale_ratio = std::min(scale_min, scale_max); + resize_scale = {scale_ratio, scale_ratio}; + } else { + resize_scale.first = + static_cast(target_size_[1]) / static_cast(origin_w); + resize_scale.second = + static_cast(target_size_[0]) / static_cast(origin_h); + } + return resize_scale; + } + + void PadStride::Run(cv::Mat *im, ImageBlob *data) { + if (stride_ <= 0) { + return; + } + int rc = im->channels(); + int rh = im->rows; + int rw = im->cols; + int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_; + int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_; + cv::copyMakeBorder(*im, *im, 0, nh - rh, 0, nw - rw, cv::BORDER_CONSTANT, + cv::Scalar(0)); + data->in_net_shape_ = { + static_cast(im->rows), static_cast(im->cols), + }; + } + +// Preprocessor op running order + const std::vector Preprocessor::RUN_ORDER = { + "InitInfo", "Resize", "NormalizeImage", "PadStride", "Permute"}; + + void Preprocessor::Run(cv::Mat *im, ImageBlob *data) { + for (const auto &name : RUN_ORDER) { + if (ops_.find(name) != ops_.end()) { + ops_[name]->Run(im, data); + } + } + } + +} // namespace Detection diff --git a/deploy/cpp_shitu/src/vector_search.cpp b/deploy/cpp_shitu/src/vector_search.cpp new file mode 100644 index 0000000000000000000000000000000000000000..85c487a771bb9bb6d84a799f5d464a09ee883b74 --- /dev/null +++ b/deploy/cpp_shitu/src/vector_search.cpp @@ -0,0 +1,62 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +#include "include/vector_search.h" +#include +#include +#include +#include +#include +#include + +void VectorSearch::LoadIndexFile() { + std::string file_path = this->index_dir + OS_PATH_SEP + "vector.index"; + const char *fname = file_path.c_str(); + this->index = faiss::read_index(fname, 0); +} + +void VectorSearch::LoadIdMap() { + std::string file_path = this->index_dir + OS_PATH_SEP + "id_map.txt"; + std::ifstream in(file_path); + std::string line; + std::vector m_vec; + if (in) { + while (getline(in, line)) { + std::regex ws_re("\\s+"); + std::vector v( + std::sregex_token_iterator(line.begin(), line.end(), ws_re, -1), + std::sregex_token_iterator()); + if (v.size() != 2) { + std::cout << "The number of element for each line in : " << file_path + << "must be 2, exit the program..." << std::endl; + exit(1); + } else + this->id_map.insert(std::pair( + std::stol(v[0], nullptr, 10), v[1])); + } + } +} + +const SearchResult &VectorSearch::Search(float *feature, int query_number) { + this->D.resize(this->return_k * query_number); + this->I.resize(this->return_k * query_number); + this->index->search(query_number, feature, return_k, D.data(), I.data()); + this->sr.return_k = this->return_k; + this->sr.D = this->D; + this->sr.I = this->I; + return this->sr; +} + +const std::string &VectorSearch::GetLabel(faiss::Index::idx_t ind) { + return this->id_map.at(ind); +} diff --git a/deploy/cpp_shitu/src/yaml_config.cpp b/deploy/cpp_shitu/src/yaml_config.cpp new file mode 100644 index 0000000000000000000000000000000000000000..b20fcde9ea137c293d366a13d36d3b9e04f34064 --- /dev/null +++ b/deploy/cpp_shitu/src/yaml_config.cpp @@ -0,0 +1,78 @@ +// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include +#include +#include + +#include + + +std::vector YamlConfig::ReadDict(const std::string &path) { + std::ifstream in(path); + std::string line; + std::vector m_vec; + if (in) { + while (getline(in, line)) { + m_vec.push_back(line); + } + } else { + std::cout << "no such label file: " << path << ", exit the program..." + << std::endl; + exit(1); + } + return m_vec; +} + +std::map YamlConfig::ReadIndexId(const std::string &path) { + std::ifstream in(path); + std::string line; + std::map m_vec; + if (in) { + while (getline(in, line)) { + std::regex ws_re("\\s+"); + std::vector v( + std::sregex_token_iterator(line.begin(), line.end(), ws_re, -1), + std::sregex_token_iterator()); + if (v.size() != 3) { + std::cout << "The number of element for each line in : " << path + << "must be 3, exit the program..." << std::endl; + exit(1); + } else + m_vec.insert(std::pair(stoi(v[0]), v[2])); + } + } + return m_vec; +} + +YAML::Node YamlConfig::ReadYamlConfig(const std::string &path) { + YAML::Node config; + try { + config = YAML::LoadFile(path); + } catch (YAML::BadFile &e) { + std::cout << "Something wrong in yaml file, please check yaml file" + << std::endl; + exit(1); + } + return config; +} + +void YamlConfig::PrintConfigInfo() { + std::cout << this->config_file << std::endl; + // for (YAML::const_iterator + // it=config_file.begin();it!=config_file.end();++it) + // { + // std::cout << it->as() << "\n"; + // } +} diff --git a/deploy/cpp_shitu/tools/build.sh b/deploy/cpp_shitu/tools/build.sh new file mode 100755 index 0000000000000000000000000000000000000000..5307af06143fc5857503bc5fbd0f0dd4caf24384 --- /dev/null +++ b/deploy/cpp_shitu/tools/build.sh @@ -0,0 +1,24 @@ +OPENCV_DIR=${opencv_install_dir} +LIB_DIR=${paddle_inference_dir} +CUDA_LIB_DIR=/usr/local/cuda/lib64 +CUDNN_LIB_DIR=/usr/lib/x86_64-linux-gnu/ +FAISS_DIR=${faiss_install_dir} +FAISS_WITH_MKL=OFF + +BUILD_DIR=build +rm -rf ${BUILD_DIR} +mkdir ${BUILD_DIR} +cd ${BUILD_DIR} +cmake .. \ + -DPADDLE_LIB=${LIB_DIR} \ + -DWITH_MKL=ON \ + -DWITH_GPU=OFF \ + -DWITH_STATIC_LIB=OFF \ + -DUSE_TENSORRT=OFF \ + -DOPENCV_DIR=${OPENCV_DIR} \ + -DCUDNN_LIB=${CUDNN_LIB_DIR} \ + -DCUDA_LIB=${CUDA_LIB_DIR} \ + -DFAISS_DIR=${FAISS_DIR} \ + -DFAISS_WITH_MKL=${FAISS_WITH_MKL} + +make -j \ No newline at end of file diff --git a/deploy/cpp_shitu/tools/transform_id_map.py b/deploy/cpp_shitu/tools/transform_id_map.py new file mode 100644 index 0000000000000000000000000000000000000000..02fe0813ec754877d12a18afb2378b297b333f33 --- /dev/null +++ b/deploy/cpp_shitu/tools/transform_id_map.py @@ -0,0 +1,38 @@ +import argparse +import os +import pickle + +import yaml + + +def parse_args(): + parser = argparse.ArgumentParser() + parser.add_argument('-c', '--config', type=str, required=True) + args = parser.parse_args() + return args + + +def main(): + args = parse_args() + with open(args.config)as fd: + config = yaml.load(fd) + index_dir = "" + try: + index_dir = config["IndexProcess"]["index_dir"] + except Exception as e: + print("The IndexProcess.index_dir in config_file dose not exist") + exit(1) + id_map_path = os.path.join(index_dir, "id_map.pkl") + assert os.path.exists(id_map_path), "The id_map file dose not exist: {}".format(id_map_path) + + with open(id_map_path, "rb")as fd: + ids = pickle.load(fd) + with open(os.path.join(index_dir, "id_map.txt"), "w")as fd: + for k, v in ids.items(): + v = v.split("\t")[1] + fd.write(str(k) + " " + v + "\n") + print('Transform id_map sucess') + + +if __name__ == "__main__": + main() diff --git a/docs/images/quick_start/shitu_c++_result.png b/docs/images/quick_start/shitu_c++_result.png new file mode 100644 index 0000000000000000000000000000000000000000..f2cbee5ef2af0f1e8941564b5430247ef0919d92 Binary files /dev/null and b/docs/images/quick_start/shitu_c++_result.png differ diff --git a/docs/zh_CN/image_recognition_pipeline/vector_search.md b/docs/zh_CN/image_recognition_pipeline/vector_search.md index 6d13783dd7c603aa36226c86a2877a8afd5c9b4b..06bacae8a1e7abc2414fc297d10750bd6ca339c3 100644 --- a/docs/zh_CN/image_recognition_pipeline/vector_search.md +++ b/docs/zh_CN/image_recognition_pipeline/vector_search.md @@ -9,7 +9,16 @@ 值得注意的是,为了更好是适配性,目前版本,`PaddleClas`中暂时**只使用CPU进行向量检索**。 -本文档主要主要介绍PaddleClas中检索模块的安装、使用的检索算法,及使用过程中的相关配置文件中参数介绍。 +
+ +
+ +如上图中所示,向量检索部分,在整个`PP-ShiTu`系统中有两部分内容 + +- 图中绿色部分:建立检索库,供检索时查询使用,同时提供增、删等功能 +- 图中蓝色部分:检索功能,即给定一张图的特征向量,返回库中相似图像的label + +本文档主要主要介绍PaddleClas中检索模块的安装、使用的检索算法、建库流程的及相关配置文件中参数介绍。 ## 一、检索库安装 @@ -31,13 +40,26 @@ pip install faiss-cpu==1.7.1post2 每种检索算法,满足不同场景。其中`HNSW32`为默认方法,此方法的检索精度、检索速度可以取得一个较好的平衡,具体算法介绍可以查看[官方文档](https://github.com/facebookresearch/faiss/wiki)。 -## 三、相关配置文档参数介绍 +## 三、使用及配置文档介绍 涉及检索模块配置文件位于:`deploy/configs/`下,其中`build_*.yaml`是建立特征库的相关配置文件,`inference_*.yaml`是检索或者分类的推理配置文件。 -### 3.1 建库配置文件参数 +### 3.1 建库及配置文件参数 + +建库的具体操作如下: + +```shell +# 进入deploy目录 +cd deploy +# yaml文件根据需要改成自己所需的具体yaml文件 +python python/build_gallery.py -c configs/build_***.yaml +``` + +其中`yaml`文件的建库的配置如下,在运行时,请根据实际情况进行修改。建库操作会将根据`data_file`的图像列表,将`image_root`下的图像进行特征提取,并在`index_dir`下进行存储,以待后续检索使用。 + +其中`data_file`文件存储的是图像文件的路径和标签,每一行的格式为:`image_path label`。中间间隔以`yaml`文件中`delimiter`参数作为间隔。 -示例建库的配置如下 +关于特征提取的具体模型参数,可查看`yaml`文件。 ```yaml # indexing engine config @@ -63,6 +85,10 @@ IndexProcess: ### 3.2 检索配置文件参数 +检索的过程,融合到`PP-ShiTu`的整体流程中,请参考[README](../../../README_ch.md)中`PP-ShiTu图像识别系统介绍`部分。检索具体使用操作请参考[识别快速开始文档](../quick_start/quick_start_recognition.md)。 + +其中,检索部分配置如下,整体检索配置文件,请参考`deploy/configs/inference_*.yaml`文件。 + ```yaml IndexProcess: index_dir: "./recognition_demo_data_v1.1/gallery_logo/index/" diff --git a/docs/zh_CN/quick_start/quick_start_recognition.md b/docs/zh_CN/quick_start/quick_start_recognition.md index 1c3c0c415da835f97c0fcb810a81c5aa5607371a..309707db0be1655746f7884257ee62d95a69c666 100644 --- a/docs/zh_CN/quick_start/quick_start_recognition.md +++ b/docs/zh_CN/quick_start/quick_start_recognition.md @@ -259,7 +259,7 @@ python3.7 python/predict_system.py -c configs/inference_general.yaml -o Global.i python3.7 python/build_gallery.py -c configs/build_general.yaml -o IndexProcess.data_file="./drink_dataset_v1.0/gallery/drink_label_all.txt" -o IndexProcess.index_dir="./drink_dataset_v1.0/index_all" ``` -最终新的索引信息保存在文件夹 `./drink_dataset_v1.0/index_all` 中。 +最终新的索引信息保存在文件夹 `./drink_dataset_v1.0/index_all` 中。具体`yaml`请参考[向量检索文档](../image_recognition_pipeline/vector_search.md)。 diff --git a/test_tipc/README.md b/test_tipc/README.md index b73444df205b1531319a504af06ef1220dfdb99b..4869f6e11ddc78b7c05c7805bfb25ba7e41b683d 100644 --- a/test_tipc/README.md +++ b/test_tipc/README.md @@ -24,15 +24,15 @@ | :--- | :--- | :----: | :--------: | :---- | :---- | :---- | | ResNet |ResNet50_vd | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | | MobileNetV3 |MobileNetV3_large_x1_0 | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | -| PPLCNet |PPLCNet_x2_5 | 分类 | 支持 | 多机多卡
混合精度 | FPGM裁剪
PACT量化| | +| PPLCNet |PPLCNet_x2_5 | 分类 | 支持 | 多机多卡
混合精度 | - | | -## 3. 一键测试工具使用 +## 3. 测试工具简介 ### 目录介绍 ``` ./test_tipc/ ├── common_func.sh #test_*.sh会调用到的公共函数 ├── config # 配置文件目录 -│ ├── MobileNetV3_large_x1_0 # MobileNetV3系列模型测试配置文件目录 +│ ├── MobileNetV3 # MobileNetV3系列模型测试配置文件目录 │ │ ├── MobileNetV3_large_x1_0_train_infer_python.txt #基础训练预测配置文件 │ │ ├── MobileNetV3_large_x1_0_train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt #多机多卡训练预测配置文件 │ │ └── MobileNetV3_large_x1_0_train_linux_gpu_normal_amp_infer_python_linux_gpu_cpu.txt #混合精度训练预测配置文件 @@ -50,7 +50,7 @@ └── test_train_inference_python.sh # 测试python训练预测的主程序 ``` -### 测试流程 +### 测试流程概述 使用本工具,可以测试不同功能的支持情况,以及预测结果是否对齐,测试流程如下:
@@ -60,16 +60,49 @@ 2. 运行要测试的功能对应的测试脚本`test_*.sh`,产出log,由log可以看到不同配置是否运行成功; 3. 用`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。 -其中,有4个测试主程序,功能如下: -- `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 -- `test_inference_cpp.sh`:测试基于C++的模型推理。待支持 -- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。待支持 -- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。待支持 +测试单项功能仅需两行命令,**如需测试不同模型/功能,替换配置文件即可**,命令格式如下: + +```shell +# 功能:准备数据 +# 格式:bash + 运行脚本 + 参数1: 配置文件选择 + 参数2: 模式选择 +bash test_tipc/prepare.sh configs/[model_name]/[params_file_name] [Mode] + +# 功能:运行测试 +# 格式:bash + 运行脚本 + 参数1: 配置文件选择 + 参数2: 模式选择 +bash test_tipc/test_train_inference_python.sh configs/[model_name]/[params_file_name] [Mode] + +``` + +例如,测试基本训练预测功能的`lite_train_lite_infer`模式,运行: + +```shell +# 准备数据 +bash test_tipc/prepare.sh ./test_tipc/configs/MobileNetV3/MobileNetV3_large_x1_0_train_infer_python.txt 'lite_train_lite_infer' +# 运行测试 +bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/MobileNetV3/MobileNetV3_large_x1_0_train_infer_python.txt 'lite_train_lite_infer' + +``` + +关于本示例命令的更多信息可查看[基础训练预测使用文档](docs/test_train_inference_python.md)。 + +### 配置文件命名规范 + +在`configs`目录下,**按模型系列划分为子目录**,子目录中存放所有该模型系列测试需要用到的配置文件,如`MobileNetV3`文件夹下存放了所有`MobileNetV3`系列模型的配置文件。配置文件的命名遵循如下规范: + +1. 基础训练预测配置简单命名为:`ModelName_train_infer_python.txt`,表示**Linux环境下单机、不使用混合精度训练+python预测**,其完整命名对应`ModelName_train_linux_gpu_normal_normal_infer_python_linux_gpu_cpu.txt`,由于本配置文件使用频率较高,这里进行了名称简化。其中`ModelName`指具体模型名称 +2. 其他带训练配置命名格式为:`ModelName_train_训练硬件环境(linux_gpu/linux_dcu/…)_是否多机(fleet/normal)_是否混合精度(amp/normal)_预测模式(infer/lite/serving/js)_语言(cpp/python/java)_预测硬件环境(ModelName_linux_gpu/mac/jetson/opencl_arm_gpu/...).txt`。如,linux gpu下多机多卡+混合精度链条测试对应配置 `ModelName_train_linux_gpu_fleet_amp_infer_python_linux_gpu_cpu.txt`,linux dcu下基础训练预测对应配置 `ModelName_train_linux_dcu_normal_normal_infer_python_linux_dcu.txt`。 +3. 仅预测的配置(如serving、lite等)命名格式:`ModelName_model_训练硬件环境(ModelName_linux_gpu/linux_dcu/…)_是否多机(fleet/normal)_是否混合精度(amp/normal)_(infer/lite/serving/js)_语言(cpp/python/java)_预测硬件环境(ModelName_linux_gpu/mac/jetson/opencl_arm_gpu/...).txt`,即,与2相比,仅第二个字段从train换为model,测试时模型直接下载获取,这里的“训练硬件环境”表示所测试的模型是在哪种环境下训练得到的。 + +**根据上述命名规范,可以直接从子目录名称和配置文件名找到需要测试的场景和功能对应的配置文件。** -#### 更多教程 + +## 4 开始测试 + 各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程: -[test_train_inference_python 使用](docs/test_train_inference_python.md) -[test_inference_cpp 使用](docs/test_inference_cpp.md) -[test_serving 使用](docs/test_serving.md) -[test_lite 使用](docs/test_lite.md) + +- [test_train_inference_python 使用](docs/test_train_inference_python.md):测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 +- [test_inference_cpp 使用](docs/test_inference_cpp.md) :测试基于C++的模型推理。 +- [test_serving 使用](docs/test_serving.md) :测试基于Paddle Serving的服务化部署功能。 +- [test_lite_arm_cpu_cpp 使用](docs/test_lite_arm_cpu_cpp.md): 测试基于Paddle-Lite的ARM CPU端c++预测部署功能. +- [test_paddle2onnx 使用](docs/test_paddle2onnx.md):测试Paddle2ONNX的模型转化功能,并验证正确性。 diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh index 1b09cff6b7ea9f30c13fc0d64e6c37875375ba05..0a1f70b0665f3ab0a21551e8505d2c4e52cd914e 100644 --- a/test_tipc/prepare.sh +++ b/test_tipc/prepare.sh @@ -76,7 +76,7 @@ elif [ ${MODE} = "whole_train_whole_infer" ];then ln -s whole_chain_CIFAR100 ILSVRC2012 cd ILSVRC2012 mv train.txt train_list.txt - mv val.txt val_list.txt + mv test.txt val_list.txt cd ../../ fi diff --git a/test_tipc/prepare_lite_cpp.sh b/test_tipc/prepare_lite_cpp.sh new file mode 100644 index 0000000000000000000000000000000000000000..b129322ddde36e496c8bc1b08f7b78e94e27288f --- /dev/null +++ b/test_tipc/prepare_lite_cpp.sh @@ -0,0 +1,93 @@ +#!/bin/bash +source ./test_tipc/common_func.sh +FILENAME=$1 +dataline=$(cat ${FILENAME}) +# parser params +IFS=$'\n' +lines=(${dataline}) +IFS=$'\n' + +inference_cmd=$(func_parser_value "${lines[1]}") +DEVICE=$(func_parser_value "${lines[2]}") +det_lite_model_list=$(func_parser_value "${lines[3]}") +rec_lite_model_list=$(func_parser_value "${lines[4]}") +cls_lite_model_list=$(func_parser_value "${lines[5]}") + +if [[ $inference_cmd =~ "det" ]];then + lite_model_list=${det_lite_model_list} +elif [[ $inference_cmd =~ "rec" ]];then + lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) +elif [[ $inference_cmd =~ "system" ]];then + lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) +else + echo "inference_cmd is wrong, please check." + exit 1 +fi + +if [ ${DEVICE} = "ARM_CPU" ];then + valid_targets="arm" + paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz" + end_index="66" +elif [ ${DEVICE} = "ARM_GPU_OPENCL" ];then + valid_targets="opencl" + paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.armv8.clang.with_exception.with_extra.with_cv.opencl.tar.gz" + end_index="71" +else + echo "DEVICE only suport ARM_CPU, ARM_GPU_OPENCL." + exit 2 +fi + +# prepare lite .nb model +pip install paddlelite==2.10-rc +current_dir=${PWD} +IFS="|" +model_path=./inference_models + +for model in ${lite_model_list[*]}; do + if [[ $model =~ "PP-OCRv2" ]];then + inference_model_url=https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/${model}.tar + elif [[ $model =~ "v2.0" ]];then + inference_model_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/${model}.tar + else + echo "Model is wrong, please check." + exit 3 + fi + inference_model=${inference_model_url##*/} + wget -nc -P ${model_path} ${inference_model_url} + cd ${model_path} && tar -xf ${inference_model} && cd ../ + model_dir=${model_path}/${inference_model%.*} + model_file=${model_dir}/inference.pdmodel + param_file=${model_dir}/inference.pdiparams + paddle_lite_opt --model_dir=${model_dir} --model_file=${model_file} --param_file=${param_file} --valid_targets=${valid_targets} --optimize_out=${model_dir}_opt +done + +# prepare test data +data_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar +model_path=./inference_models +inference_model=${inference_model_url##*/} +data_file=${data_url##*/} +wget -nc -P ./inference_models ${inference_model_url} +wget -nc -P ./test_data ${data_url} +cd ./inference_models && tar -xf ${inference_model} && cd ../ +cd ./test_data && tar -xf ${data_file} && rm ${data_file} && cd ../ + +# prepare lite env +paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}') +paddlelite_file=${paddlelite_zipfile:0:${end_index}} +wget ${paddlelite_url} && tar -xf ${paddlelite_zipfile} +mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite +cp -r ${model_path}/*_opt.nb test_data ${paddlelite_file}/demo/cxx/ocr/test_lite +cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite +cp -r ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/ +cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite +cp ${FILENAME} test_tipc/test_lite_arm_cpp.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite +cd ${paddlelite_file}/demo/cxx/ocr/ +git clone https://github.com/cuicheng01/AutoLog.git + +# make +make -j +sleep 1 +make -j +cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so +tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir} +rm -rf ${paddlelite_file}* && rm -rf ${model_path} diff --git a/test_tipc/test_inference_cpp.sh b/test_tipc/test_inference_cpp.sh new file mode 100644 index 0000000000000000000000000000000000000000..d26954353ef1e81ae49364b7f9d20357768cff85 --- /dev/null +++ b/test_tipc/test_inference_cpp.sh @@ -0,0 +1,208 @@ +#!/bin/bash +source test_tipc/common_func.sh + +FILENAME=$1 +dataline=$(awk 'NR==1, NR==16{print}' $FILENAME) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +# parser cpp inference model +model_name=$(func_parser_value "${lines[1]}") +use_opencv=$(func_parser_value "${lines[2]}") +cpp_infer_model_dir_list=$(func_parser_value "${lines[3]}") +cpp_infer_is_quant=$(func_parser_value "${lines[4]}") +# parser cpp inference +inference_cmd=$(func_parser_value "${lines[5]}") +cpp_use_gpu_key=$(func_parser_key "${lines[6]}") +cpp_use_gpu_list=$(func_parser_value "${lines[6]}") +cpp_use_mkldnn_key=$(func_parser_key "${lines[7]}") +cpp_use_mkldnn_list=$(func_parser_value "${lines[7]}") +cpp_cpu_threads_key=$(func_parser_key "${lines[8]}") +cpp_cpu_threads_list=$(func_parser_value "${lines[8]}") +cpp_batch_size_key=$(func_parser_key "${lines[9]}") +cpp_batch_size_list=$(func_parser_value "${lines[9]}") +cpp_use_trt_key=$(func_parser_key "${lines[10]}") +cpp_use_trt_list=$(func_parser_value "${lines[10]}") +cpp_precision_key=$(func_parser_key "${lines[11]}") +cpp_precision_list=$(func_parser_value "${lines[11]}") +cpp_infer_model_key=$(func_parser_key "${lines[12]}") +cpp_image_dir_key=$(func_parser_key "${lines[13]}") +cpp_infer_img_dir=$(func_parser_value "${lines[13]}") +cpp_infer_key1=$(func_parser_key "${lines[14]}") +cpp_infer_value1=$(func_parser_value "${lines[14]}") +cpp_benchmark_key=$(func_parser_key "${lines[15]}") +cpp_benchmark_value=$(func_parser_value "${lines[15]}") + +LOG_PATH="./test_tipc/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results_cpp.log" + + +function func_cpp_inference(){ + IFS='|' + _script=$1 + _model_dir=$2 + _log_path=$3 + _img_dir=$4 + _flag_quant=$5 + # inference + for use_gpu in ${cpp_use_gpu_list[*]}; do + if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then + for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do + if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then + continue + fi + for threads in ${cpp_cpu_threads_list[*]}; do + for batch_size in ${cpp_batch_size_list[*]}; do + precision="fp32" + if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then + precison="int8" + fi + _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_precision_${precision}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") + set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") + set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}") + set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") + command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + done + done + done + elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then + for use_trt in ${cpp_use_trt_list[*]}; do + for precision in ${cpp_precision_list[*]}; do + if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then + continue + fi + if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then + continue + fi + if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then + continue + fi + for batch_size in ${cpp_batch_size_list[*]}; do + _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" + set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}") + set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}") + set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}") + set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}") + set_precision=$(func_set_params "${cpp_precision_key}" "${precision}") + set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}") + set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}") + command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " + eval $command + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${command}" "${status_log}" + + done + done + done + else + echo "Does not support hardware other than CPU and GPU Currently!" + fi + done +} + + +cd deploy/cpp_infer +if [ ${use_opencv} = "True" ]; then + if [ -d "opencv-3.4.7/opencv3/" ] && [ $(md5sum opencv-3.4.7.tar.gz | awk -F ' ' '{print $1}') = "faa2b5950f8bee3f03118e600c74746a" ];then + echo "################### build opencv skipped ###################" + else + echo "################### build opencv ###################" + rm -rf opencv-3.4.7.tar.gz opencv-3.4.7/ + wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/opencv-3.4.7.tar.gz + tar -xf opencv-3.4.7.tar.gz + + cd opencv-3.4.7/ + install_path=$(pwd)/opencv3 + + rm -rf build + mkdir build + cd build + + cmake .. \ + -DCMAKE_INSTALL_PREFIX=${install_path} \ + -DCMAKE_BUILD_TYPE=Release \ + -DBUILD_SHARED_LIBS=OFF \ + -DWITH_IPP=OFF \ + -DBUILD_IPP_IW=OFF \ + -DWITH_LAPACK=OFF \ + -DWITH_EIGEN=OFF \ + -DCMAKE_INSTALL_LIBDIR=lib64 \ + -DWITH_ZLIB=ON \ + -DBUILD_ZLIB=ON \ + -DWITH_JPEG=ON \ + -DBUILD_JPEG=ON \ + -DWITH_PNG=ON \ + -DBUILD_PNG=ON \ + -DWITH_TIFF=ON \ + -DBUILD_TIFF=ON + + make -j + make install + cd ../ + echo "################### build opencv finished ###################" + fi +fi + + +echo "################### build PaddleOCR demo ####################" +if [ ${use_opencv} = "True" ]; then + OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/ +else + OPENCV_DIR='' +fi +LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/ +CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`) +CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`) + +BUILD_DIR=build +rm -rf ${BUILD_DIR} +mkdir ${BUILD_DIR} +cd ${BUILD_DIR} +cmake .. \ + -DPADDLE_LIB=${LIB_DIR} \ + -DWITH_MKL=ON \ + -DWITH_GPU=OFF \ + -DWITH_STATIC_LIB=OFF \ + -DWITH_TENSORRT=OFF \ + -DOPENCV_DIR=${OPENCV_DIR} \ + -DCUDNN_LIB=${CUDNN_LIB_DIR} \ + -DCUDA_LIB=${CUDA_LIB_DIR} \ + -DTENSORRT_DIR=${TENSORRT_DIR} \ + +make -j +cd ../../../ +echo "################### build PaddleOCR demo finished ###################" + + +# set cuda device +GPUID=$2 +if [ ${#GPUID} -le 0 ];then + env=" " +else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" +fi +set CUDA_VISIBLE_DEVICES +eval $env + + +echo "################### run test ###################" +export Count=0 +IFS="|" +infer_quant_flag=(${cpp_infer_is_quant}) +for infer_model in ${cpp_infer_model_dir_list[*]}; do + #run inference + is_quant=${infer_quant_flag[Count]} + func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) +done diff --git a/test_tipc/test_inference_jeston.sh b/test_tipc/test_inference_jeston.sh new file mode 100644 index 0000000000000000000000000000000000000000..2fd76e1e9e7e8c7b52d0b6838cd15840a59fe5c4 --- /dev/null +++ b/test_tipc/test_inference_jeston.sh @@ -0,0 +1,87 @@ +#!/bin/bash +source test_tipc/common_func.sh +source test_tipc/test_train_inference_python.sh + +FILENAME=$1 +# MODE be one of ['whole_infer'] +MODE=$2 + +dataline=$(awk 'NR==1, NR==17{print}' $FILENAME) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") + +infer_model_dir_list=$(func_parser_value "${lines[3]}") +infer_export_list=$(func_parser_value "${lines[4]}") +infer_is_quant=$(func_parser_value "${lines[5]}") +# parser inference +inference_py=$(func_parser_value "${lines[6]}") +use_gpu_key=$(func_parser_key "${lines[7]}") +use_gpu_list=$(func_parser_value "${lines[7]}") +use_mkldnn_key=$(func_parser_key "${lines[8]}") +use_mkldnn_list=$(func_parser_value "${lines[8]}") +cpu_threads_key=$(func_parser_key "${lines[9]}") +cpu_threads_list=$(func_parser_value "${lines[9]}") +batch_size_key=$(func_parser_key "${lines[10]}") +batch_size_list=$(func_parser_value "${lines[10]}") +use_trt_key=$(func_parser_key "${lines[11]}") +use_trt_list=$(func_parser_value "${lines[11]}") +precision_key=$(func_parser_key "${lines[12]}") +precision_list=$(func_parser_value "${lines[12]}") +infer_model_key=$(func_parser_key "${lines[13]}") +image_dir_key=$(func_parser_key "${lines[14]}") +infer_img_dir=$(func_parser_value "${lines[14]}") +save_log_key=$(func_parser_key "${lines[15]}") +benchmark_key=$(func_parser_key "${lines[16]}") +benchmark_value=$(func_parser_value "${lines[16]}") +infer_key1=$(func_parser_key "${lines[17]}") +infer_value1=$(func_parser_value "${lines[17]}") + + +LOG_PATH="./test_tipc/output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results_python.log" + + +if [ ${MODE} = "whole_infer" ]; then + GPUID=$3 + if [ ${#GPUID} -le 0 ];then + env=" " + else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" + fi + # set CUDA_VISIBLE_DEVICES + eval $env + export Count=0 + IFS="|" + infer_run_exports=(${infer_export_list}) + infer_quant_flag=(${infer_is_quant}) + for infer_model in ${infer_model_dir_list[*]}; do + # run export + if [ ${infer_run_exports[Count]} != "null" ];then + save_infer_dir=$(dirname $infer_model) + set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") + set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") + export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}" + echo ${infer_run_exports[Count]} + echo $export_cmd + eval $export_cmd + status_export=$? + status_check $status_export "${export_cmd}" "${status_log}" + else + save_infer_dir=${infer_model} + fi + #run inference + is_quant=${infer_quant_flag[Count]} + if [ ${MODE} = "klquant_infer" ]; then + is_quant="True" + fi + func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} + Count=$(($Count + 1)) + done +fi + diff --git a/test_tipc/test_lite_arm_cpp.sh b/test_tipc/test_lite_arm_cpp.sh new file mode 100644 index 0000000000000000000000000000000000000000..c071a236bb7ea35b86b32bfc3b22e87a5aabbb93 --- /dev/null +++ b/test_tipc/test_lite_arm_cpp.sh @@ -0,0 +1,159 @@ +#!/bin/bash +source ./common_func.sh +export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH + +FILENAME=$1 +dataline=$(cat $FILENAME) +# parser params +IFS=$'\n' +lines=(${dataline}) + +# parser lite inference +inference_cmd=$(func_parser_value "${lines[1]}") +runtime_device=$(func_parser_value "${lines[2]}") +det_model_list=$(func_parser_value "${lines[3]}") +rec_model_list=$(func_parser_value "${lines[4]}") +cls_model_list=$(func_parser_value "${lines[5]}") +cpu_threads_list=$(func_parser_value "${lines[6]}") +det_batch_size_list=$(func_parser_value "${lines[7]}") +rec_batch_size_list=$(func_parser_value "${lines[8]}") +infer_img_dir_list=$(func_parser_value "${lines[9]}") +config_dir=$(func_parser_value "${lines[10]}") +rec_dict_dir=$(func_parser_value "${lines[11]}") +benchmark_value=$(func_parser_value "${lines[12]}") + +if [[ $inference_cmd =~ "det" ]]; then + lite_model_list=${det_lite_model_list} +elif [[ $inference_cmd =~ "rec" ]]; then + lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) +elif [[ $inference_cmd =~ "system" ]]; then + lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]}) +else + echo "inference_cmd is wrong, please check." + exit 1 +fi + +LOG_PATH="./output" +mkdir -p ${LOG_PATH} +status_log="${LOG_PATH}/results.log" + + +function func_test_det(){ + IFS='|' + _script=$1 + _det_model=$2 + _log_path=$3 + _img_dir=$4 + _config=$5 + if [[ $_det_model =~ "slim" ]]; then + precision="INT8" + else + precision="FP32" + fi + + # lite inference + for num_threads in ${cpu_threads_list[*]}; do + for det_batchsize in ${det_batch_size_list[*]}; do + _save_log_path="${_log_path}/lite_${_det_model}_runtime_device_${runtime_device}_precision_${precision}_det_batchsize_${det_batchsize}_threads_${num_threads}.log" + command="${_script} ${_det_model} ${runtime_device} ${precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${benchmark_value} > ${_save_log_path} 2>&1" + eval ${command} + status_check $? "${command}" "${status_log}" + done + done +} + +function func_test_rec(){ + IFS='|' + _script=$1 + _rec_model=$2 + _cls_model=$3 + _log_path=$4 + _img_dir=$5 + _config=$6 + _rec_dict_dir=$7 + + if [[ $_det_model =~ "slim" ]]; then + _precision="INT8" + else + _precision="FP32" + fi + + # lite inference + for num_threads in ${cpu_threads_list[*]}; do + for rec_batchsize in ${rec_batch_size_list[*]}; do + _save_log_path="${_log_path}/lite_${_rec_model}_${cls_model}_runtime_device_${runtime_device}_precision_${_precision}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log" + command="${_script} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${rec_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1" + eval ${command} + status_check $? "${command}" "${status_log}" + done + done +} + +function func_test_system(){ + IFS='|' + _script=$1 + _det_model=$2 + _rec_model=$3 + _cls_model=$4 + _log_path=$5 + _img_dir=$6 + _config=$7 + _rec_dict_dir=$8 + if [[ $_det_model =~ "slim" ]]; then + _precision="INT8" + else + _precision="FP32" + fi + + # lite inference + for num_threads in ${cpu_threads_list[*]}; do + for det_batchsize in ${det_batch_size_list[*]}; do + for rec_batchsize in ${rec_batch_size_list[*]}; do + _save_log_path="${_log_path}/lite_${_det_model}_${_rec_model}_${_cls_model}_runtime_device_${runtime_device}_precision_${_precision}_det_batchsize_${det_batchsize}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log" + command="${_script} ${_det_model} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1" + eval ${command} + status_check $? "${command}" "${status_log}" + done + done + done +} + + +echo "################### run test ###################" + +if [[ $inference_cmd =~ "det" ]]; then + IFS="|" + det_model_list=(${det_model_list[*]}) + + for i in {0..1}; do + #run lite inference + for img_dir in ${infer_img_dir_list[*]}; do + func_test_det "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}" + done + done + +elif [[ $inference_cmd =~ "rec" ]]; then + IFS="|" + rec_model_list=(${rec_model_list[*]}) + cls_model_list=(${cls_model_list[*]}) + + for i in {0..1}; do + #run lite inference + for img_dir in ${infer_img_dir_list[*]}; do + func_test_rec "${inference_cmd}" "${rec_model}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${rec_dict_dir}" "${config_dir}" + done + done + +elif [[ $inference_cmd =~ "system" ]]; then + IFS="|" + det_model_list=(${det_model_list[*]}) + rec_model_list=(${rec_model_list[*]}) + cls_model_list=(${cls_model_list[*]}) + + for i in {0..1}; do + #run lite inference + for img_dir in ${infer_img_dir_list[*]}; do + func_test_system "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${rec_model_list[i]}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}" "${rec_dict_dir}" + done + done +fi diff --git a/test_tipc/test_paddle2onnx.sh b/test_tipc/test_paddle2onnx.sh new file mode 100644 index 0000000000000000000000000000000000000000..300c61770d2519fad0502147e2cee4a3e4f50ac9 --- /dev/null +++ b/test_tipc/test_paddle2onnx.sh @@ -0,0 +1,78 @@ +#!/bin/bash +source test_tipc/common_func.sh + +FILENAME=$1 + +dataline=$(cat ${FILENAME}) +lines=(${dataline}) +# common params +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") + + +# parser params +dataline=$(awk 'NR==1, NR==12{print}' $FILENAME) +IFS=$'\n' +lines=(${dataline}) + +# parser paddle2onnx +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") +padlle2onnx_cmd=$(func_parser_value "${lines[3]}") +infer_model_dir_key=$(func_parser_key "${lines[4]}") +infer_model_dir_value=$(func_parser_value "${lines[4]}") +model_filename_key=$(func_parser_key "${lines[5]}") +model_filename_value=$(func_parser_value "${lines[5]}") +params_filename_key=$(func_parser_key "${lines[6]}") +params_filename_value=$(func_parser_value "${lines[6]}") +save_file_key=$(func_parser_key "${lines[7]}") +save_file_value=$(func_parser_value "${lines[7]}") +opset_version_key=$(func_parser_key "${lines[8]}") +opset_version_value=$(func_parser_value "${lines[8]}") +enable_onnx_checker_key=$(func_parser_key "${lines[9]}") +enable_onnx_checker_value=$(func_parser_value "${lines[9]}") +# parser onnx inference +inference_py=$(func_parser_value "${lines[10]}") +use_gpu_key=$(func_parser_key "${lines[11]}") +use_gpu_value=$(func_parser_value "${lines[11]}") +det_model_key=$(func_parser_key "${lines[12]}") +image_dir_key=$(func_parser_key "${lines[13]}") +image_dir_value=$(func_parser_value "${lines[13]}") + + +LOG_PATH="./test_tipc/output" +mkdir -p ./test_tipc/output +status_log="${LOG_PATH}/results_paddle2onnx.log" + + +function func_paddle2onnx(){ + IFS='|' + _script=$1 + + # paddle2onnx + _save_log_path="${LOG_PATH}/paddle2onnx_infer_cpu.log" + set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}") + set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}") + set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}") + set_save_model=$(func_set_params "${save_file_key}" "${save_file_value}") + set_opset_version=$(func_set_params "${opset_version_key}" "${opset_version_value}") + set_enable_onnx_checker=$(func_set_params "${enable_onnx_checker_key}" "${enable_onnx_checker_value}") + trans_model_cmd="${padlle2onnx_cmd} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_save_model} ${set_opset_version} ${set_enable_onnx_checker}" + eval $trans_model_cmd + last_status=${PIPESTATUS[0]} + status_check $last_status "${trans_model_cmd}" "${status_log}" + # python inference + set_gpu=$(func_set_params "${use_gpu_key}" "${use_gpu_value}") + set_model_dir=$(func_set_params "${det_model_key}" "${save_file_value}") + set_img_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}") + infer_model_cmd="${python} ${inference_py} ${set_gpu} ${set_img_dir} ${set_model_dir} --use_onnx=True > ${_save_log_path} 2>&1 " + eval $infer_model_cmd + status_check $last_status "${infer_model_cmd}" "${status_log}" +} + + +echo "################### run test ###################" + +export Count=0 +IFS="|" +func_paddle2onnx \ No newline at end of file diff --git a/test_tipc/test_serving.sh b/test_tipc/test_serving.sh new file mode 100644 index 0000000000000000000000000000000000000000..c36935a60fecacea672fd932773a8fb0bdcd619b --- /dev/null +++ b/test_tipc/test_serving.sh @@ -0,0 +1,168 @@ +#!/bin/bash +source test_tipc/common_func.sh + +FILENAME=$1 +dataline=$(awk 'NR==1, NR==18{print}' $FILENAME) + +# parser params +IFS=$'\n' +lines=(${dataline}) + +# parser serving +model_name=$(func_parser_value "${lines[1]}") +python=$(func_parser_value "${lines[2]}") +trans_model_py=$(func_parser_value "${lines[3]}") +infer_model_dir_key=$(func_parser_key "${lines[4]}") +infer_model_dir_value=$(func_parser_value "${lines[4]}") +model_filename_key=$(func_parser_key "${lines[5]}") +model_filename_value=$(func_parser_value "${lines[5]}") +params_filename_key=$(func_parser_key "${lines[6]}") +params_filename_value=$(func_parser_value "${lines[6]}") +serving_server_key=$(func_parser_key "${lines[7]}") +serving_server_value=$(func_parser_value "${lines[7]}") +serving_client_key=$(func_parser_key "${lines[8]}") +serving_client_value=$(func_parser_value "${lines[8]}") +serving_dir_value=$(func_parser_value "${lines[9]}") +web_service_py=$(func_parser_value "${lines[10]}") +web_use_gpu_key=$(func_parser_key "${lines[11]}") +web_use_gpu_list=$(func_parser_value "${lines[11]}") +web_use_mkldnn_key=$(func_parser_key "${lines[12]}") +web_use_mkldnn_list=$(func_parser_value "${lines[12]}") +web_cpu_threads_key=$(func_parser_key "${lines[13]}") +web_cpu_threads_list=$(func_parser_value "${lines[13]}") +web_use_trt_key=$(func_parser_key "${lines[14]}") +web_use_trt_list=$(func_parser_value "${lines[14]}") +web_precision_key=$(func_parser_key "${lines[15]}") +web_precision_list=$(func_parser_value "${lines[15]}") +pipeline_py=$(func_parser_value "${lines[16]}") +image_dir_key=$(func_parser_key "${lines[17]}") +image_dir_value=$(func_parser_value "${lines[17]}") + +LOG_PATH="../../test_tipc/output" +mkdir -p ./test_tipc/output +status_log="${LOG_PATH}/results_serving.log" + +function func_serving(){ + IFS='|' + _python=$1 + _script=$2 + _model_dir=$3 + # pdserving + set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}") + set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}") + set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}") + set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}") + set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}") + set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}") + trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}" + eval $trans_model_cmd + cd ${serving_dir_value} + echo $PWD + unset https_proxy + unset http_proxy + for python in ${python[*]}; do + if [ ${python} = "cpp"]; then + for use_gpu in ${web_use_gpu_list[*]}; do + if [ ${use_gpu} = "null" ]; then + web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293" + eval $web_service_cmd + sleep 2s + _save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log" + pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/" + eval $pipeline_cmd + status_check $last_status "${pipeline_cmd}" "${status_log}" + sleep 2s + ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 + else + web_service_cpp_cmd="${python} -m paddle_serving_server.serve --model ppocr_det_mobile_2.0_serving/ ppocr_rec_mobile_2.0_serving/ --port 9293 --gpu_id=0" + eval $web_service_cmd + sleep 2s + _save_log_path="${LOG_PATH}/server_infer_cpp_cpu_pipeline_usemkldnn_False_threads_4_batchsize_1.log" + pipeline_cmd="${python} ocr_cpp_client.py ppocr_det_mobile_2.0_client/ ppocr_rec_mobile_2.0_client/" + eval $pipeline_cmd + status_check $last_status "${pipeline_cmd}" "${status_log}" + sleep 2s + ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 + fi + done + else + # python serving + for use_gpu in ${web_use_gpu_list[*]}; do + echo ${ues_gpu} + if [ ${use_gpu} = "null" ]; then + for use_mkldnn in ${web_use_mkldnn_list[*]}; do + if [ ${use_mkldnn} = "False" ]; then + continue + fi + for threads in ${web_cpu_threads_list[*]}; do + set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}") + web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &" + eval $web_service_cmd + sleep 2s + for pipeline in ${pipeline_py[*]}; do + _save_log_path="${LOG_PATH}/server_infer_cpu_${pipeline%_client*}_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log" + pipeline_cmd="${python} ${pipeline} ${set_image_dir} > ${_save_log_path} 2>&1 " + eval $pipeline_cmd + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${pipeline_cmd}" "${status_log}" + sleep 2s + done + ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 + done + done + elif [ ${use_gpu} = "0" ]; then + for use_trt in ${web_use_trt_list[*]}; do + for precision in ${web_precision_list[*]}; do + if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then + continue + fi + if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then + continue + fi + if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then + continue + fi + set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}") + set_precision=$(func_set_params "${web_precision_key}" "${precision}") + web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} & " + eval $web_service_cmd + + sleep 2s + for pipeline in ${pipeline_py[*]}; do + _save_log_path="${LOG_PATH}/server_infer_gpu_${pipeline%_client*}_usetrt_${use_trt}_precision_${precision}_batchsize_1.log" + pipeline_cmd="${python} ${pipeline} ${set_image_dir}> ${_save_log_path} 2>&1" + eval $pipeline_cmd + last_status=${PIPESTATUS[0]} + eval "cat ${_save_log_path}" + status_check $last_status "${pipeline_cmd}" "${status_log}" + sleep 2s + done + ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9 + done + done + else + echo "Does not support hardware other than CPU and GPU Currently!" + fi + done + fi + done +} + + +# set cuda device +GPUID=$2 +if [ ${#GPUID} -le 0 ];then + env=" " +else + env="export CUDA_VISIBLE_DEVICES=${GPUID}" +fi +set CUDA_VISIBLE_DEVICES +eval $env + + +echo "################### run test ###################" + +export Count=0 +IFS="|" +func_serving "${web_service_cmd}"