提交 0149730b 编写于 作者: S stephon

fix some problems in *.md; remove unused import in *.py

上级 6b813ec6
import numpy as np
import requests import requests
import json import json
import cv2
import base64 import base64
import os import os
......
...@@ -15,12 +15,7 @@ try: ...@@ -15,12 +15,7 @@ try:
from paddle_serving_server_gpu.pipeline import PipelineClient from paddle_serving_server_gpu.pipeline import PipelineClient
except ImportError: except ImportError:
from paddle_serving_server.pipeline import PipelineClient from paddle_serving_server.pipeline import PipelineClient
import numpy as np
import requests
import json
import cv2
import base64 import base64
import os
client = PipelineClient() client = PipelineClient()
client.connect(['127.0.0.1:9993']) client.connect(['127.0.0.1:9993'])
......
# Metric Learning
## 简介
在机器学习中,我们经常会遇到度量数据间距离的问题。一般来说,对于可度量的数据,我们可以直接通过欧式距离(Euclidean Distance),向量内积(Inner Product)或者是余弦相似度(Cosine Similarity)来进行计算。但对于非结构化数据来说,我们却很难进行这样的操作,如计算一段视频和一首音乐的匹配程度。由于数据格式的不同,我们难以直接进行上述的向量运算,但先验知识告诉我们ED(laugh_video, laugh_music) < ED(laugh_video, blue_music), 如何去有效得表征这种”距离”关系呢? 这就是Metric Learning所要研究的课题。
Metric learning全称是 Distance Metric Learning,它是通过机器学习的形式,根据训练数据,自动构造出一种基于特定任务的度量函数。Metric Learning的目标是学习一个变换函数(线性非线性均可)L,将数据点从原始的向量空间映射到一个新的向量空间,在新的向量空间里相似点的距离更近,非相似点的距离更远,使得度量更符合任务的要求,如下图所示。 Deep Metric Learning,就是用深度神经网络来拟合这个变换函数。
![example](../images/ml_illustration.jpg)
## 应用
Metric Learning技术在生活实际中应用广泛,如我们耳熟能详的人脸识别(Face Recognition)、行人重识别(Person ReID)、图像检索(Image Retrieval)、细粒度分类(Fine-gained classification)等. 随着深度学习在工业实践中越来越广泛的应用,目前大家研究的方向基本都偏向于Deep Metric Learning(DML).
一般来说, DML包含三个部分: 特征提取网络来map embedding, 一个采样策略来将一个mini-batch里的样本组合成很多个sub-set, 最后loss function在每个sub-set上计算loss. 如下图所示:
![image](../images/ml_pipeline.jpg)
## 算法
Metric Learning主要有如下两种学习范式:
### 1. Classification based:
这是一类基于分类标签的Metric Learning方法。这类方法通过将每个样本分类到正确的类别中,来学习有效的特征表示,学习过程中需要每个样本的显式标签参与Loss计算。常见的算法有[L2-Softmax](https://arxiv.org/abs/1703.09507), [Large-margin Softmax](https://arxiv.org/abs/1612.02295), [Angular Softmax](https://arxiv.org/pdf/1704.08063.pdf), [NormFace](https://arxiv.org/abs/1704.06369), [AM-Softmax](https://arxiv.org/abs/1801.05599), [CosFace](https://arxiv.org/abs/1801.09414), [ArcFace](https://arxiv.org/abs/1801.07698)等。
这类方法也被称作是proxy-based, 因为其本质上优化的是样本和一堆proxies之间的相似度。
### 2. Pairwise based:
这是一类基于样本对的学习范式。他以样本对作为输入,通过直接学习样本对之间的相似度来得到有效的特征表示,常见的算法包括:[Contrastive loss](http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf), [Triplet loss](https://arxiv.org/abs/1503.03832), [Lifted-Structure loss](https://arxiv.org/abs/1511.06452), [N-pair loss](https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf), [Multi-Similarity loss](https://arxiv.org/pdf/1904.06627.pdf)
2020年发表的[CircleLoss](https://arxiv.org/abs/2002.10857),从一个全新的视角统一了两种学习范式,让研究人员和从业者对Metric Learning问题有了更进一步的思考。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册