diff --git a/hubconf.py b/hubconf.py index 4870b8be1e806ed8df4aa044e114742f8065955a..2ebfd23de571b12b88b534a162bdfec7f87a0563 100644 --- a/hubconf.py +++ b/hubconf.py @@ -12,821 +12,800 @@ # See the License for the specific language governing permissions and # limitations under the License. -dependencies = ['paddle', 'numpy'] +dependencies = ['paddle'] import paddle -from ppcls.modeling import architectures - - -def _load_pretrained_parameters(model, name): - url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'.format( - name) - path = paddle.utils.download.get_weights_path_from_url(url) - model.set_state_dict(paddle.load(path)) - return model - - -def alexnet(pretrained=False, **kwargs): - """ - AlexNet - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `AlexNet` model depends on args. - """ - model = architectures.AlexNet(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'AlexNet') - - return model - - -def vgg11(pretrained=False, **kwargs): - """ - VGG11 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` - Returns: - model: nn.Layer. Specific `VGG11` model depends on args. - """ - model = architectures.VGG11(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'VGG11') - - return model - - -def vgg13(pretrained=False, **kwargs): - """ - VGG13 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` - Returns: - model: nn.Layer. Specific `VGG13` model depends on args. - """ - model = architectures.VGG13(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'VGG13') - - return model - - -def vgg16(pretrained=False, **kwargs): - """ - VGG16 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` - Returns: - model: nn.Layer. Specific `VGG16` model depends on args. - """ - model = architectures.VGG16(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'VGG16') - - return model - - -def vgg19(pretrained=False, **kwargs): - """ - VGG19 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` - Returns: - model: nn.Layer. Specific `VGG19` model depends on args. - """ - model = architectures.VGG19(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'VGG19') - - return model - - -def resnet18(pretrained=False, **kwargs): - """ - ResNet18 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - input_image_channel: int=3. The number of input image channels - data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') - Returns: - model: nn.Layer. Specific `ResNet18` model depends on args. - """ - model = architectures.ResNet18(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNet18') - - return model - - -def resnet34(pretrained=False, **kwargs): - """ - ResNet34 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - input_image_channel: int=3. The number of input image channels - data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') - Returns: - model: nn.Layer. Specific `ResNet34` model depends on args. - """ - model = architectures.ResNet34(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNet34') - - return model - - -def resnet50(pretrained=False, **kwargs): - """ - ResNet50 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - input_image_channel: int=3. The number of input image channels - data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') - Returns: - model: nn.Layer. Specific `ResNet50` model depends on args. - """ - model = architectures.ResNet50(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNet50') - - return model - - -def resnet101(pretrained=False, **kwargs): - """ - ResNet101 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - input_image_channel: int=3. The number of input image channels - data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') - Returns: - model: nn.Layer. Specific `ResNet101` model depends on args. - """ - model = architectures.ResNet101(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNet101') - - return model - - -def resnet152(pretrained=False, **kwargs): - """ - ResNet152 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - input_image_channel: int=3. The number of input image channels - data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') - Returns: - model: nn.Layer. Specific `ResNet152` model depends on args. - """ - model = architectures.ResNet152(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNet152') - - return model - - -def squeezenet1_0(pretrained=False, **kwargs): - """ - SqueezeNet1_0 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `SqueezeNet1_0` model depends on args. - """ - model = architectures.SqueezeNet1_0(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'SqueezeNet1_0') - - return model - - -def squeezenet1_1(pretrained=False, **kwargs): - """ - SqueezeNet1_1 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `SqueezeNet1_1` model depends on args. - """ - model = architectures.SqueezeNet1_1(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'SqueezeNet1_1') - - return model - - -def densenet121(pretrained=False, **kwargs): - """ - DenseNet121 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - dropout: float=0. Probability of setting units to zero. - bn_size: int=4. The number of channals per group - Returns: - model: nn.Layer. Specific `DenseNet121` model depends on args. - """ - model = architectures.DenseNet121(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'DenseNet121') - - return model - - -def densenet161(pretrained=False, **kwargs): - """ - DenseNet161 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - dropout: float=0. Probability of setting units to zero. - bn_size: int=4. The number of channals per group - Returns: - model: nn.Layer. Specific `DenseNet161` model depends on args. - """ - model = architectures.DenseNet161(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'DenseNet161') - - return model - - -def densenet169(pretrained=False, **kwargs): - """ - DenseNet169 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - dropout: float=0. Probability of setting units to zero. - bn_size: int=4. The number of channals per group - Returns: - model: nn.Layer. Specific `DenseNet169` model depends on args. - """ - model = architectures.DenseNet169(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'DenseNet169') - - return model - - -def densenet201(pretrained=False, **kwargs): - """ - DenseNet201 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - dropout: float=0. Probability of setting units to zero. - bn_size: int=4. The number of channals per group - Returns: - model: nn.Layer. Specific `DenseNet201` model depends on args. - """ - model = architectures.DenseNet201(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'DenseNet201') - - return model - - -def densenet264(pretrained=False, **kwargs): - """ - DenseNet264 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - dropout: float=0. Probability of setting units to zero. - bn_size: int=4. The number of channals per group - Returns: - model: nn.Layer. Specific `DenseNet264` model depends on args. - """ - model = architectures.DenseNet264(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'DenseNet264') - - return model - - -def inceptionv3(pretrained=False, **kwargs): - """ - InceptionV3 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `InceptionV3` model depends on args. - """ - model = architectures.InceptionV3(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'InceptionV3') - - return model - - -def inceptionv4(pretrained=False, **kwargs): - """ - InceptionV4 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `InceptionV4` model depends on args. - """ - model = architectures.InceptionV4(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'InceptionV4') - - return model - - -def googlenet(pretrained=False, **kwargs): - """ - GoogLeNet - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `GoogLeNet` model depends on args. - """ - model = architectures.GoogLeNet(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'GoogLeNet') - - return model - - -def shufflenetv2_x0_25(pretrained=False, **kwargs): - """ - ShuffleNetV2_x0_25 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args. - """ - model = architectures.ShuffleNetV2_x0_25(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ShuffleNetV2_x0_25') - - return model - - -def mobilenetv1(pretrained=False, **kwargs): - """ - MobileNetV1 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV1` model depends on args. - """ - model = architectures.MobileNetV1(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV1') - - return model - - -def mobilenetv1_x0_25(pretrained=False, **kwargs): - """ - MobileNetV1_x0_25 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args. - """ - model = architectures.MobileNetV1_x0_25(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV1_x0_25') - - return model - - -def mobilenetv1_x0_5(pretrained=False, **kwargs): - """ - MobileNetV1_x0_5 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args. - """ - model = architectures.MobileNetV1_x0_5(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV1_x0_5') - - return model - - -def mobilenetv1_x0_75(pretrained=False, **kwargs): - """ - MobileNetV1_x0_75 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args. - """ - model = architectures.MobileNetV1_x0_75(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV1_x0_75') - - return model - - -def mobilenetv2_x0_25(pretrained=False, **kwargs): - """ - MobileNetV2_x0_25 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args. - """ - model = architectures.MobileNetV2_x0_25(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV2_x0_25') - - return model - - -def mobilenetv2_x0_5(pretrained=False, **kwargs): - """ - MobileNetV2_x0_5 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args. - """ - model = architectures.MobileNetV2_x0_5(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV2_x0_5') - - return model - - -def mobilenetv2_x0_75(pretrained=False, **kwargs): - """ - MobileNetV2_x0_75 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args. - """ - model = architectures.MobileNetV2_x0_75(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV2_x0_75') - - return model - - -def mobilenetv2_x1_5(pretrained=False, **kwargs): - """ - MobileNetV2_x1_5 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args. - """ - model = architectures.MobileNetV2_x1_5(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV2_x1_5') - - return model - - -def mobilenetv2_x2_0(pretrained=False, **kwargs): - """ - MobileNetV2_x2_0 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args. - """ - model = architectures.MobileNetV2_x2_0(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV2_x2_0') - - return model - - -def mobilenetv3_large_x0_35(pretrained=False, **kwargs): - """ - MobileNetV3_large_x0_35 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args. - """ - model = architectures.MobileNetV3_large_x0_35(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_35') - - return model - - -def mobilenetv3_large_x0_5(pretrained=False, **kwargs): - """ - MobileNetV3_large_x0_5 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args. - """ - model = architectures.MobileNetV3_large_x0_5(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_5') - - return model - - -def mobilenetv3_large_x0_75(pretrained=False, **kwargs): - """ - MobileNetV3_large_x0_75 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args. - """ - model = architectures.MobileNetV3_large_x0_75(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_large_x0_75') - - return model - - -def mobilenetv3_large_x1_0(pretrained=False, **kwargs): - """ - MobileNetV3_large_x1_0 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args. - """ - model = architectures.MobileNetV3_large_x1_0(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_0') - - return model - - -def mobilenetv3_large_x1_25(pretrained=False, **kwargs): - """ - MobileNetV3_large_x1_25 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. - """ - model = architectures.MobileNetV3_large_x1_25(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_large_x1_25') - - return model - - -def mobilenetv3_small_x0_35(pretrained=False, **kwargs): - """ - MobileNetV3_small_x0_35 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args. - """ - model = architectures.MobileNetV3_small_x0_35(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_35') - - return model - - -def mobilenetv3_small_x0_5(pretrained=False, **kwargs): - """ - MobileNetV3_small_x0_5 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args. - """ - model = architectures.MobileNetV3_small_x0_5(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_5') - - return model - - -def mobilenetv3_small_x0_75(pretrained=False, **kwargs): - """ - MobileNetV3_small_x0_75 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args. - """ - model = architectures.MobileNetV3_small_x0_75(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_small_x0_75') - - return model - - -def mobilenetv3_small_x1_0(pretrained=False, **kwargs): - """ - MobileNetV3_small_x1_0 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args. - """ - model = architectures.MobileNetV3_small_x1_0(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_0') - - return model - - -def mobilenetv3_small_x1_25(pretrained=False, **kwargs): - """ - MobileNetV3_small_x1_25 - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args. - """ - model = architectures.MobileNetV3_small_x1_25(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'MobileNetV3_small_x1_25') - - return model - - -def resnext101_32x4d(pretrained=False, **kwargs): - """ - ResNeXt101_32x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args. - """ - model = architectures.ResNeXt101_32x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt101_32x4d') - - return model - - -def resnext101_64x4d(pretrained=False, **kwargs): - """ - ResNeXt101_64x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args. - """ - model = architectures.ResNeXt101_64x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt101_64x4d') - - return model - - -def resnext152_32x4d(pretrained=False, **kwargs): - """ - ResNeXt152_32x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args. - """ - model = architectures.ResNeXt152_32x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt152_32x4d') - - return model - - -def resnext152_64x4d(pretrained=False, **kwargs): - """ - ResNeXt152_64x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args. - """ - model = architectures.ResNeXt152_64x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt152_64x4d') - - return model - - -def resnext50_32x4d(pretrained=False, **kwargs): - """ - ResNeXt50_32x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args. - """ - model = architectures.ResNeXt50_32x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt50_32x4d') - - return model - - -def resnext50_64x4d(pretrained=False, **kwargs): - """ - ResNeXt50_64x4d - Args: - pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. - kwargs: - class_dim: int=1000. Output dim of last fc layer. - Returns: - model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args. - """ - model = architectures.ResNeXt50_64x4d(**kwargs) - if pretrained: - model = _load_pretrained_parameters(model, 'ResNeXt50_64x4d') - - return model +import os +import sys + + +class _SysPathG(object): + def __enter__(self, ): + sys.path.insert(0, + os.path.join( + os.path.dirname(os.path.abspath(__file__)), + 'ppcls', 'modeling')) + + def __exit__(self, type, value, traceback): + sys.path.pop(0) + + +with _SysPathG(): + import architectures + + def _load_pretrained_parameters(model, name): + url = 'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/{}_pretrained.pdparams'.format( + name) + path = paddle.utils.download.get_weights_path_from_url(url) + model.set_state_dict(paddle.load(path)) + return model + + def alexnet(pretrained=False, **kwargs): + """ + AlexNet + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `AlexNet` model depends on args. + """ + model = architectures.AlexNet(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'AlexNet') + + return model + + def vgg11(pretrained=False, **kwargs): + """ + VGG11 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG11` model depends on args. + """ + model = architectures.VGG11(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'VGG11') + + return model + + def vgg13(pretrained=False, **kwargs): + """ + VGG13 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG13` model depends on args. + """ + model = architectures.VGG13(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'VGG13') + + return model + + def vgg16(pretrained=False, **kwargs): + """ + VGG16 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG16` model depends on args. + """ + model = architectures.VGG16(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'VGG16') + + return model + + def vgg19(pretrained=False, **kwargs): + """ + VGG19 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + stop_grad_layers: int=0. The parameters in blocks which index larger than `stop_grad_layers`, will be set `param.trainable=False` + Returns: + model: nn.Layer. Specific `VGG19` model depends on args. + """ + model = architectures.VGG19(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'VGG19') + + return model + + def resnet18(pretrained=False, **kwargs): + """ + ResNet18 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet18` model depends on args. + """ + model = architectures.ResNet18(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNet18') + + return model + + def resnet34(pretrained=False, **kwargs): + """ + ResNet34 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet34` model depends on args. + """ + model = architectures.ResNet34(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNet34') + + return model + + def resnet50(pretrained=False, **kwargs): + """ + ResNet50 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet50` model depends on args. + """ + model = architectures.ResNet50(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNet50') + + return model + + def resnet101(pretrained=False, **kwargs): + """ + ResNet101 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet101` model depends on args. + """ + model = architectures.ResNet101(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNet101') + + return model + + def resnet152(pretrained=False, **kwargs): + """ + ResNet152 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + input_image_channel: int=3. The number of input image channels + data_format: str='NCHW'. The data format of batch input images, should in ('NCHW', 'NHWC') + Returns: + model: nn.Layer. Specific `ResNet152` model depends on args. + """ + model = architectures.ResNet152(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNet152') + + return model + + def squeezenet1_0(pretrained=False, **kwargs): + """ + SqueezeNet1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `SqueezeNet1_0` model depends on args. + """ + model = architectures.SqueezeNet1_0(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'SqueezeNet1_0') + + return model + + def squeezenet1_1(pretrained=False, **kwargs): + """ + SqueezeNet1_1 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `SqueezeNet1_1` model depends on args. + """ + model = architectures.SqueezeNet1_1(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'SqueezeNet1_1') + + return model + + def densenet121(pretrained=False, **kwargs): + """ + DenseNet121 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet121` model depends on args. + """ + model = architectures.DenseNet121(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'DenseNet121') + + return model + + def densenet161(pretrained=False, **kwargs): + """ + DenseNet161 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet161` model depends on args. + """ + model = architectures.DenseNet161(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'DenseNet161') + + return model + + def densenet169(pretrained=False, **kwargs): + """ + DenseNet169 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet169` model depends on args. + """ + model = architectures.DenseNet169(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'DenseNet169') + + return model + + def densenet201(pretrained=False, **kwargs): + """ + DenseNet201 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet201` model depends on args. + """ + model = architectures.DenseNet201(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'DenseNet201') + + return model + + def densenet264(pretrained=False, **kwargs): + """ + DenseNet264 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + dropout: float=0. Probability of setting units to zero. + bn_size: int=4. The number of channals per group + Returns: + model: nn.Layer. Specific `DenseNet264` model depends on args. + """ + model = architectures.DenseNet264(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'DenseNet264') + + return model + + def inceptionv3(pretrained=False, **kwargs): + """ + InceptionV3 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `InceptionV3` model depends on args. + """ + model = architectures.InceptionV3(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'InceptionV3') + + return model + + def inceptionv4(pretrained=False, **kwargs): + """ + InceptionV4 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `InceptionV4` model depends on args. + """ + model = architectures.InceptionV4(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'InceptionV4') + + return model + + def googlenet(pretrained=False, **kwargs): + """ + GoogLeNet + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `GoogLeNet` model depends on args. + """ + model = architectures.GoogLeNet(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'GoogLeNet') + + return model + + def shufflenetv2_x0_25(pretrained=False, **kwargs): + """ + ShuffleNetV2_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ShuffleNetV2_x0_25` model depends on args. + """ + model = architectures.ShuffleNetV2_x0_25(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ShuffleNetV2_x0_25') + + return model + + def mobilenetv1(pretrained=False, **kwargs): + """ + MobileNetV1 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1` model depends on args. + """ + model = architectures.MobileNetV1(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV1') + + return model + + def mobilenetv1_x0_25(pretrained=False, **kwargs): + """ + MobileNetV1_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_25` model depends on args. + """ + model = architectures.MobileNetV1_x0_25(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV1_x0_25') + + return model + + def mobilenetv1_x0_5(pretrained=False, **kwargs): + """ + MobileNetV1_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_5` model depends on args. + """ + model = architectures.MobileNetV1_x0_5(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV1_x0_5') + + return model + + def mobilenetv1_x0_75(pretrained=False, **kwargs): + """ + MobileNetV1_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV1_x0_75` model depends on args. + """ + model = architectures.MobileNetV1_x0_75(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV1_x0_75') + + return model + + def mobilenetv2_x0_25(pretrained=False, **kwargs): + """ + MobileNetV2_x0_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_25` model depends on args. + """ + model = architectures.MobileNetV2_x0_25(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV2_x0_25') + + return model + + def mobilenetv2_x0_5(pretrained=False, **kwargs): + """ + MobileNetV2_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_5` model depends on args. + """ + model = architectures.MobileNetV2_x0_5(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV2_x0_5') + + return model + + def mobilenetv2_x0_75(pretrained=False, **kwargs): + """ + MobileNetV2_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x0_75` model depends on args. + """ + model = architectures.MobileNetV2_x0_75(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV2_x0_75') + + return model + + def mobilenetv2_x1_5(pretrained=False, **kwargs): + """ + MobileNetV2_x1_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x1_5` model depends on args. + """ + model = architectures.MobileNetV2_x1_5(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV2_x1_5') + + return model + + def mobilenetv2_x2_0(pretrained=False, **kwargs): + """ + MobileNetV2_x2_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV2_x2_0` model depends on args. + """ + model = architectures.MobileNetV2_x2_0(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'MobileNetV2_x2_0') + + return model + + def mobilenetv3_large_x0_35(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_35 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_35` model depends on args. + """ + model = architectures.MobileNetV3_large_x0_35(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_large_x0_35') + + return model + + def mobilenetv3_large_x0_5(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_5` model depends on args. + """ + model = architectures.MobileNetV3_large_x0_5(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_large_x0_5') + + return model + + def mobilenetv3_large_x0_75(pretrained=False, **kwargs): + """ + MobileNetV3_large_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x0_75` model depends on args. + """ + model = architectures.MobileNetV3_large_x0_75(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_large_x0_75') + + return model + + def mobilenetv3_large_x1_0(pretrained=False, **kwargs): + """ + MobileNetV3_large_x1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x1_0` model depends on args. + """ + model = architectures.MobileNetV3_large_x1_0(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_large_x1_0') + + return model + + def mobilenetv3_large_x1_25(pretrained=False, **kwargs): + """ + MobileNetV3_large_x1_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_large_x1_25` model depends on args. + """ + model = architectures.MobileNetV3_large_x1_25(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_large_x1_25') + + return model + + def mobilenetv3_small_x0_35(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_35 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_35` model depends on args. + """ + model = architectures.MobileNetV3_small_x0_35(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_small_x0_35') + + return model + + def mobilenetv3_small_x0_5(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_5 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_5` model depends on args. + """ + model = architectures.MobileNetV3_small_x0_5(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_small_x0_5') + + return model + + def mobilenetv3_small_x0_75(pretrained=False, **kwargs): + """ + MobileNetV3_small_x0_75 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x0_75` model depends on args. + """ + model = architectures.MobileNetV3_small_x0_75(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_small_x0_75') + + return model + + def mobilenetv3_small_x1_0(pretrained=False, **kwargs): + """ + MobileNetV3_small_x1_0 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x1_0` model depends on args. + """ + model = architectures.MobileNetV3_small_x1_0(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_small_x1_0') + + return model + + def mobilenetv3_small_x1_25(pretrained=False, **kwargs): + """ + MobileNetV3_small_x1_25 + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `MobileNetV3_small_x1_25` model depends on args. + """ + model = architectures.MobileNetV3_small_x1_25(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, + 'MobileNetV3_small_x1_25') + + return model + + def resnext101_32x4d(pretrained=False, **kwargs): + """ + ResNeXt101_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt101_32x4d` model depends on args. + """ + model = architectures.ResNeXt101_32x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt101_32x4d') + + return model + + def resnext101_64x4d(pretrained=False, **kwargs): + """ + ResNeXt101_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt101_64x4d` model depends on args. + """ + model = architectures.ResNeXt101_64x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt101_64x4d') + + return model + + def resnext152_32x4d(pretrained=False, **kwargs): + """ + ResNeXt152_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt152_32x4d` model depends on args. + """ + model = architectures.ResNeXt152_32x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt152_32x4d') + + return model + + def resnext152_64x4d(pretrained=False, **kwargs): + """ + ResNeXt152_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt152_64x4d` model depends on args. + """ + model = architectures.ResNeXt152_64x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt152_64x4d') + + return model + + def resnext50_32x4d(pretrained=False, **kwargs): + """ + ResNeXt50_32x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt50_32x4d` model depends on args. + """ + model = architectures.ResNeXt50_32x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt50_32x4d') + + return model + + def resnext50_64x4d(pretrained=False, **kwargs): + """ + ResNeXt50_64x4d + Args: + pretrained: bool=False. If `True` load pretrained parameters, `False` otherwise. + kwargs: + class_dim: int=1000. Output dim of last fc layer. + Returns: + model: nn.Layer. Specific `ResNeXt50_64x4d` model depends on args. + """ + model = architectures.ResNeXt50_64x4d(**kwargs) + if pretrained: + model = _load_pretrained_parameters(model, 'ResNeXt50_64x4d') + + return model