learning_rate.py 7.3 KB
Newer Older
S
shippingwang 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
S
shippingwang 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
S
shippingwang 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys
import math

import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter

__all__ = ['LearningRateBuilder']


class Linear(object):
    """
    Linear learning rate decay

    Args:
        lr(float): initial learning rate
        steps(int): total decay steps
        end_lr(float): end learning rate, default: 0.0.
    """

    def __init__(self, lr, steps, end_lr=0.0, **kwargs):
        super(Linear, self).__init__()
        self.lr = lr
        self.steps = steps
        self.end_lr = end_lr

    def __call__(self):
        learning_rate = fluid.layers.polynomial_decay(
            self.lr, self.steps, self.end_lr, power=1)
        return learning_rate


class Cosine(object):
    """
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
    """

    def __init__(self, lr, step_each_epoch, epochs, **kwargs):
        super(Cosine, self).__init__()
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def __call__(self):
        learning_rate = fluid.layers.cosine_decay(
            learning_rate=self.lr,
            step_each_epoch=self.step_each_epoch,
            epochs=self.epochs)
        return learning_rate


class Piecewise(object):
    """
    Piecewise learning rate decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(list): piecewise decay epochs
        gamma(float): decay factor
    """

    def __init__(self, lr, step_each_epoch, decay_epochs, gamma=0.1, **kwargs):
        super(Piecewise, self).__init__()
        self.bd = [step_each_epoch * e for e in decay_epochs]
        self.lr = [lr * (gamma**i) for i in range(len(self.bd) + 1)]

    def __call__(self):
        learning_rate = fluid.layers.piecewise_decay(self.bd, self.lr)
        return learning_rate


class CosineWarmup(object):
    """
    Cosine learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): cosine decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        warmup_epoch(int): epoch num of warmup
    """

    def __init__(self, lr, step_each_epoch, epochs, warmup_epoch=5, **kwargs):
        super(CosineWarmup, self).__init__()
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs
        self.warmup_epoch = fluid.layers.fill_constant(
            shape=[1],
            value=float(warmup_epoch),
            dtype='float32',
            force_cpu=True)

    def __call__(self):
        global_step = _decay_step_counter()
        learning_rate = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")
        epoch = ops.floor(global_step / self.step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < self.warmup_epoch):
                decayed_lr = self.lr * \
S
shippingwang 已提交
133
                    (global_step / (self.step_each_epoch * self.warmup_epoch))
W
WuHaobo 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)
            with switch.default():
                current_step = global_step - self.warmup_epoch * self.step_each_epoch
                total_step = (
                    self.epochs - self.warmup_epoch) * self.step_each_epoch
                decayed_lr = self.lr * \
                    (ops.cos(current_step * math.pi / total_step) + 1) / 2
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)

        return learning_rate


S
shippingwang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
class ExponentialWarmup(object):
    """
    Exponential learning rate decay with warmup
    [0, warmup_epoch): linear warmup
    [warmup_epoch, epochs): Exponential decay

    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        decay_epochs(float): decay epochs
        decay_rate(float): decay rate
        warmup_epoch(int): epoch num of warmup
    """

S
shippingwang 已提交
162 163 164 165 166 167 168 169
    def __init__(self,
                 lr,
                 step_each_epoch,
                 decay_epochs=2.4,
                 decay_rate=0.97,
                 warmup_epoch=5,
                 **kwargs):
        super(ExponentialWarmup, self).__init__()
S
shippingwang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        self.lr = lr
        self.step_each_epoch = step_each_epoch
        self.decay_epochs = decay_epochs * self.step_each_epoch
        self.decay_rate = decay_rate
        self.warmup_epoch = fluid.layers.fill_constant(
            shape=[1],
            value=float(warmup_epoch),
            dtype='float32',
            force_cpu=True)

    def __call__(self):
        global_step = _decay_step_counter()
        learning_rate = fluid.layers.tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

        epoch = ops.floor(global_step / self.step_each_epoch)
        with fluid.layers.control_flow.Switch() as switch:
            with switch.case(epoch < self.warmup_epoch):
                decayed_lr = self.lr * \
S
shippingwang 已提交
193
                    (global_step / (self.step_each_epoch * self.warmup_epoch))
S
shippingwang 已提交
194 195 196 197 198 199
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)
            with switch.default():
                rest_step = global_step - self.warmup_epoch * self.step_each_epoch
                div_res = ops.floor(rest_step / self.decay_epochs)

S
shippingwang 已提交
200
                decayed_lr = self.lr * (self.decay_rate**div_res)
S
shippingwang 已提交
201 202 203 204 205
                fluid.layers.tensor.assign(
                    input=decayed_lr, output=learning_rate)

        return learning_rate

S
shippingwang 已提交
206

W
WuHaobo 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
class LearningRateBuilder():
    """
    Build learning rate variable
    https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/layers_cn.html

    Args:
        function(str): class name of learning rate
        params(dict): parameters used for init the class
    """

    def __init__(self,
                 function='Linear',
                 params={'lr': 0.1,
                         'steps': 100,
                         'end_lr': 0.0}):
        self.function = function
        self.params = params

    def __call__(self):
        mod = sys.modules[__name__]
        lr = getattr(mod, self.function)(**self.params)()
        return lr