DeiT_base_patch16_224.yaml 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
10
  epochs: 300
11 12 13 14 15 16 17 18 19
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference

# model architecture
Arch:
  name: DeiT_base_patch16_224
G
gaotingquan 已提交
20 21
  drop_path_rate : 0.1
  drop_rate : 0.0
littletomatodonkey's avatar
littletomatodonkey 已提交
22
  class_num: 1000
23 24 25 26
 
# loss function config for traing/eval process
Loss:
  Train:
G
gaotingquan 已提交
27
    - CELoss:
28
        weight: 1.0
29
        epsilon: 0.1
30 31 32 33 34
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
35 36 37 38 39 40 41
  name: AdamW
  beta1: 0.9
  beta2: 0.999
  epsilon: 1e-8
  weight_decay: 0.05
  no_weight_decay_name: norm cls_token pos_embed dist_token
  one_dim_param_no_weight_decay: True
42
  lr:
43 44 45 46 47
    name: Cosine
    learning_rate: 1e-3
    eta_min: 1e-5
    warmup_epoch: 5
    warmup_start_lr: 1e-6
48 49 50 51 52 53 54 55 56 57 58 59 60 61

# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/train_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
62 63
            interpolation: bicubic
            backend: pil
64 65
        - RandFlipImage:
            flip_code: 1
66 67 68 69
        - TimmAutoAugment:
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
            img_size: 224
70 71 72 73 74
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        - RandomErasing:
            EPSILON: 0.25
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
      batch_transform_ops:
        - OpSampler:
            MixupOperator:
              alpha: 0.8
              prob: 0.5
            CutmixOperator:
              alpha: 1.0
              prob: 0.5
91 92
    sampler:
      name: DistributedBatchSampler
93
      batch_size: 256
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
      drop_last: False
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
      image_root: ./dataset/ILSVRC2012/
      cls_label_path: ./dataset/ILSVRC2012/val_list.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
111 112
            interpolation: bicubic
            backend: pil
113 114 115 116 117 118 119 120 121
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
122
      batch_size: 256
123 124 125 126 127 128 129
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
T
Tingquan Gao 已提交
130
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
131 132 133 134 135 136 137
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
138 139
        interpolation: bicubic
        backend: pil
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
    name: Topk
    topk: 5
    class_id_map_file: ppcls/utils/imagenet1k_label_list.txt

Metric:
  Eval:
    - TopkAcc:
        topk: [1, 5]