EfficientNetB0.yaml 1.8 KB
Newer Older
S
shippingwang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
mode: 'train'
ARCHITECTURE:
    name: "EfficientNetB0"
    drop_connect_rate: 0.1
    padding_type : "SAME"
pretrained_model: ""
model_save_dir: "./output/"
classes_num: 1000
total_images: 1281167
save_interval: 1
validate: True
valid_interval: 1
epochs: 360
topk: 5
image_shape: [3, 224, 224]
use_ema: True
ema_decay: 0.9999
use_aa: True
ls_epsilon: 0.1

LEARNING_RATE:
    function: 'ExponentialWarmup'
    params:
        lr: 0.032

OPTIMIZER:
    function: 'RMSProp'
    params:
        momentum: 0.9
        rho: 0.9
        epsilon: 0.001
    regularizer:
        function: 'L2'
        factor: 0.00001

TRAIN:
    batch_size: 512
    num_workers: 4
    file_list: "./dataset/ILSVRC2012/train_list.txt"
    data_dir: "./dataset/ILSVRC2012/"
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            to_np: Fals
            channel_first: False
        - RandCropImage:
            size: 224
S
fix  
shippingwang 已提交
49
            interpolation: 2
S
shippingwang 已提交
50 51
        - RandFlipImage:
            flip_code: 1
S
shippingwang 已提交
52
        - AutoAugment:
S
shippingwang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        - NormalizeImage:
            scale: 1./255.
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage:



VALID:
    batch_size: 128
    num_workers: 4
    file_list: "./dataset/ILSVRC2012/val_list.txt"
    data_dir: "./dataset/ILSVRC2012/"
    shuffle_seed: 0
    transforms:
        - DecodeImage:
            to_rgb: True
            to_np: False
            channel_first: False
        - ResizeImage:
            interpolation: 2
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - ToCHWImage: