object_detector.h 3.2 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include <vector>
D
dongshuilong 已提交
22
#include <stdlib.h>
D
dongshuilong 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include "json/json.h"

#include "paddle_api.h"  // NOLINT

#include "include/config_parser.h"
#include "include/preprocess_op.h"
#include "include/utils.h"
#include "include/picodet_postprocess.h"

using namespace paddle::lite_api;  // NOLINT

namespace PPShiTu {

// Generate visualization colormap for each class
std::vector<int> GenerateColorMap(int num_class);

// Visualiztion Detection Result
cv::Mat VisualizeResult(const cv::Mat& img,
                        const std::vector<PPShiTu::ObjectResult>& results,
                        const std::vector<std::string>& lables,
                        const std::vector<int>& colormap,
                        const bool is_rbox);

class ObjectDetector {
 public:
  explicit ObjectDetector(const Json::Value& config,
		  	  const std::string& model_dir,
                          int cpu_threads = 1,
                          const int batch_size = 1) {
    config_.load_config(config);
    printf("config created\n");
    preprocessor_.Init(config_.preprocess_info_);
    printf("before object detector\n");
    if(config["Global"]["det_model_path"].as<std::string>().empty()){
	std::cout << "Please set [det_model_path] in config file" << std::endl;
D
dongshuilong 已提交
62
	exit(-1);
D
dongshuilong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    }
    LoadModel(config["Global"]["det_model_path"].as<std::string>(), cpu_threads);
    printf("create object detector\n"); }

  // Load Paddle inference model
  void LoadModel(std::string model_file, int num_theads);

  // Run predictor
  void Predict(const std::vector<cv::Mat>& imgs,
               const int warmup = 0,
               const int repeats = 1,
               std::vector<PPShiTu::ObjectResult>* result = nullptr,
               std::vector<int>* bbox_num = nullptr,
               std::vector<double>* times = nullptr);

  // Get Model Label list
  const std::vector<std::string>& GetLabelList() const {
    return config_.label_list_;
  }

 private:
  // Preprocess image and copy data to input buffer
  void Preprocess(const cv::Mat& image_mat);
  // Postprocess result
  void Postprocess(const std::vector<cv::Mat> mats,
                   std::vector<PPShiTu::ObjectResult>* result,
                   std::vector<int> bbox_num,
                   bool is_rbox);

  std::shared_ptr<PaddlePredictor> predictor_;
  Preprocessor preprocessor_;
  ImageBlob inputs_;
  std::vector<float> output_data_;
  std::vector<int> out_bbox_num_data_;
  float threshold_;
  ConfigPaser config_;

};

}  // namespace PPShiTu