vgg.py 5.2 KB
Newer Older
1 2 3
#coding:utf-8
import numpy as np
import argparse
W
WuHaobo 已提交
4 5
import paddle
import paddle.fluid as fluid
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.base import to_variable

from paddle.fluid import framework

import math
import sys
import time

__all__ = ["VGG11", "VGG13", "VGG16", "VGG19"]

class Conv_Block(fluid.dygraph.Layer):
    def __init__(self, 
                input_channels, 
                output_channels,
                groups,
                name=None):
        super(Conv_Block, self).__init__()

        self.groups = groups
        self._conv_1 = Conv2D(num_channels=input_channels,
                            num_filters=output_channels,
                            filter_size=3,
                            stride=1,
                            padding=1,
                            act="relu",
                            param_attr=ParamAttr(name=name + "1_weights"),
                            bias_attr=False)
        if groups == 2 or groups == 3 or groups == 4:
            self._conv_2 = Conv2D(num_channels=output_channels,
                                num_filters=output_channels,
                                filter_size=3,
                                stride=1,
                                padding=1,
                                act="relu",
                                param_attr=ParamAttr(name=name + "2_weights"),
                                bias_attr=False)
        if groups == 3 or groups == 4:
            self._conv_3 = Conv2D(num_channels=output_channels,
                                num_filters=output_channels,
                                filter_size=3,
                                stride=1,
                                padding=1,
                                act="relu",
                                param_attr=ParamAttr(name=name + "3_weights"),
                                bias_attr=False)
        if groups == 4:
            self._conv_4 = Conv2D(number_channels=output_channels,
                                number_filters=output_channels,
                                filter_size=3,
                                stride=1,
                                padding=1,
                                act="relu",
                                param_attr=ParamAttr(name=name + "4_weights"),
                                bias_attr=False)
        self._pool = Pool2D(pool_size=2,
                            pool_type="max",
                            pool_stride=2)

    def forward(self, inputs):
        x = self._conv_1(inputs)
        if self.groups == 2 or self.groups == 3 or self.groups == 4:
            x = self._conv_2(x)
        if self.groups == 3 or self.groups == 4 :
            x = self._conv_3(x)
        if self.groups == 4:
            x = self._conv_4(x)
        x = self._pool(x)
        return x

class VGGNet(fluid.dygraph.Layer):
    def __init__(self, layers=11, class_dim=1000):
        super(VGGNet, self).__init__()
W
WuHaobo 已提交
81 82

        self.layers = layers
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        self.vgg_configure = {11: [1, 1, 2, 2, 2],
                            13: [2, 2, 2, 2, 2],
                            16: [2, 2, 3, 3, 3],
                            19: [2, 2, 4, 4, 4]}
        assert self.layers in self.vgg_configure.keys(), \
            "supported layers are {} but input layer is {}".format(vgg_configure.keys(), layers)
        self.groups = self.vgg_configure[self.layers]

        self._conv_block_1 = Conv_Block(3, 64, self.groups[0], name="conv1_")
        self._conv_block_2 = Conv_Block(64, 128, self.groups[1], name="conv2_")
        self._conv_block_3 = Conv_Block(128, 256, self.groups[2], name="conv3_")
        self._conv_block_4 = Conv_Block(256, 512, self.groups[3], name="conv4_")
        self._conv_block_5 = Conv_Block(512, 512, self.groups[4], name="conv5_")

        #self._drop = fluid.dygraph.nn.Dropout(p=0.5)
        self._fc1 = Linear(input_dim=7*7*512,
                        output_dim=4096,
                        act="relu",
                        param_attr=ParamAttr(name="fc6_weights"),
                        bias_attr=ParamAttr(name="fc6_offset"))
        self._fc2 = Linear(input_dim=4096,
                        output_dim=4096,
                        act="relu",
                        param_attr=ParamAttr(name="fc7_weights"),
                        bias_attr=ParamAttr(name="fc7_offset"))
        self._out = Linear(input_dim=4096,
                        output_dim=class_dim,
                        param_attr=ParamAttr(name="fc8_weights"),
                        bias_attr=ParamAttr(name="fc8_offset"))

    def forward(self, inputs):
        x = self._conv_block_1(inputs)
        x = self._conv_block_2(x)
        x = self._conv_block_3(x)
        x = self._conv_block_4(x)
        x = self._conv_block_5(x)

        x = fluid.layers.flatten(x, axis=0)
        x = self._fc1(x)
        # x = self._drop(x)
        x = self._fc2(x)
        # x = self._drop(x)
        x = self._out(x)
        return x
W
WuHaobo 已提交
127 128 129

def VGG11():
    model = VGGNet(layers=11)
130
    return model 
W
WuHaobo 已提交
131 132 133 134 135 136 137

def VGG13():
    model = VGGNet(layers=13)
    return model

def VGG16():
    model = VGGNet(layers=16)
138
    return model 
W
WuHaobo 已提交
139 140 141

def VGG19():
    model = VGGNet(layers=19)
142
    return model