optimizer.py 7.8 KB
Newer Older
W
WuHaobo 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
W
WuHaobo 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WuHaobo 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
from paddle import optimizer as optim
Z
zhangbo9674 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21

G
gaotingquan 已提交
22 23
from ppcls.utils import logger

littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37

class Momentum(object):
    """
    Simple Momentum optimizer with velocity state.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
                 momentum,
38
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
39
                 grad_clip=None,
Z
zhangbo9674 已提交
40
                 multi_precision=True):
G
gaotingquan 已提交
41
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
42 43
        self.learning_rate = learning_rate
        self.momentum = momentum
44 45
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
46
        self.multi_precision = multi_precision
littletomatodonkey's avatar
littletomatodonkey 已提交
47

G
gaotingquan 已提交
48
    def __call__(self, model_list):
G
gaotingquan 已提交
49 50 51
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
52
        opt = optim.Momentum(
littletomatodonkey's avatar
littletomatodonkey 已提交
53 54
            learning_rate=self.learning_rate,
            momentum=self.momentum,
55 56
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
littletomatodonkey's avatar
littletomatodonkey 已提交
57
            multi_precision=self.multi_precision,
58
            parameters=parameters)
Z
zhangbo9674 已提交
59 60 61 62 63 64 65 66
        if hasattr(opt, '_use_multi_tensor'):
            opt = optim.Momentum(
                learning_rate=self.learning_rate,
                momentum=self.momentum,
                weight_decay=self.weight_decay,
                grad_clip=self.grad_clip,
                multi_precision=self.multi_precision,
                parameters=parameters,
Z
zhangbo9674 已提交
67
                use_multi_tensor=True)
68 69 70 71 72 73 74 75 76 77 78 79 80
        return opt


class Adam(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-08,
                 parameter_list=None,
                 weight_decay=None,
                 grad_clip=None,
                 name=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
81 82
                 lazy_mode=False,
                 multi_precision=False):
83 84 85 86 87 88 89 90 91 92
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.parameter_list = parameter_list
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
        self.name = name
        self.lazy_mode = lazy_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
93
        self.multi_precision = multi_precision
94

G
gaotingquan 已提交
95
    def __call__(self, model_list):
G
gaotingquan 已提交
96 97 98
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
99 100 101 102 103 104 105 106 107
        opt = optim.Adam(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            name=self.name,
            lazy_mode=self.lazy_mode,
littletomatodonkey's avatar
littletomatodonkey 已提交
108
            multi_precision=self.multi_precision,
109
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        return opt


class RMSProp(object):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
    Args:
        learning_rate (float|Variable) - The learning rate used to update parameters.
            Can be a float value or a Variable with one float value as data element.
        momentum (float) - Momentum factor.
        rho (float) - rho value in equation.
        epsilon (float) - avoid division by zero, default is 1e-6.
        regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
    """

    def __init__(self,
                 learning_rate,
127
                 momentum=0.0,
littletomatodonkey's avatar
littletomatodonkey 已提交
128 129
                 rho=0.95,
                 epsilon=1e-6,
130
                 weight_decay=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
131 132
                 grad_clip=None,
                 multi_precision=False):
G
gaotingquan 已提交
133
        super().__init__()
littletomatodonkey's avatar
littletomatodonkey 已提交
134 135 136 137
        self.learning_rate = learning_rate
        self.momentum = momentum
        self.rho = rho
        self.epsilon = epsilon
138 139
        self.weight_decay = weight_decay
        self.grad_clip = grad_clip
littletomatodonkey's avatar
littletomatodonkey 已提交
140

G
gaotingquan 已提交
141
    def __call__(self, model_list):
G
gaotingquan 已提交
142 143 144
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
145
        opt = optim.RMSProp(
littletomatodonkey's avatar
littletomatodonkey 已提交
146 147 148 149
            learning_rate=self.learning_rate,
            momentum=self.momentum,
            rho=self.rho,
            epsilon=self.epsilon,
150 151 152
            weight_decay=self.weight_decay,
            grad_clip=self.grad_clip,
            parameters=parameters)
littletomatodonkey's avatar
littletomatodonkey 已提交
153
        return opt
G
gaotingquan 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180


class AdamW(object):
    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-8,
                 weight_decay=None,
                 multi_precision=False,
                 grad_clip=None,
                 no_weight_decay_name=None,
                 one_dim_param_no_weight_decay=False,
                 **args):
        super().__init__()
        self.learning_rate = learning_rate
        self.beta1 = beta1
        self.beta2 = beta2
        self.epsilon = epsilon
        self.grad_clip = grad_clip
        self.weight_decay = weight_decay
        self.multi_precision = multi_precision
        self.no_weight_decay_name_list = no_weight_decay_name.split(
        ) if no_weight_decay_name else []
        self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay

    def __call__(self, model_list):
G
gaotingquan 已提交
181 182 183
        # model_list is None in static graph
        parameters = sum([m.parameters() for m in model_list],
                         []) if model_list else None
G
gaotingquan 已提交
184

G
gaotingquan 已提交
185
        # TODO(gaotingquan): model_list is None when in static graph, "no_weight_decay" not work.
G
gaotingquan 已提交
186 187 188 189 190 191 192
        if model_list is None:
            if self.one_dim_param_no_weight_decay or len(
                    self.no_weight_decay_name_list) != 0:
                msg = "\"AdamW\" does not support setting \"no_weight_decay\" in static graph. Please use dynamic graph."
                logger.error(Exception(msg))
                raise Exception(msg)

G
gaotingquan 已提交
193 194 195
        self.no_weight_decay_param_name_list = [
            p.name for model in model_list for n, p in model.named_parameters()
            if any(nd in n for nd in self.no_weight_decay_name_list)
G
gaotingquan 已提交
196
        ] if model_list else []
G
gaotingquan 已提交
197 198 199 200 201

        if self.one_dim_param_no_weight_decay:
            self.no_weight_decay_param_name_list += [
                p.name for model in model_list
                for n, p in model.named_parameters() if len(p.shape) == 1
G
gaotingquan 已提交
202
            ] if model_list else []
G
gaotingquan 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217

        opt = optim.AdamW(
            learning_rate=self.learning_rate,
            beta1=self.beta1,
            beta2=self.beta2,
            epsilon=self.epsilon,
            parameters=parameters,
            weight_decay=self.weight_decay,
            multi_precision=self.multi_precision,
            grad_clip=self.grad_clip,
            apply_decay_param_fun=self._apply_decay_param_fun)
        return opt

    def _apply_decay_param_fun(self, name):
        return name not in self.no_weight_decay_param_name_list