se_resnet_vd.py 11.8 KB
Newer Older
W
WuHaobo 已提交
1
#
2 3 4
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
5 6 7
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
8 9 10 11 12
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
13 14 15 16 17

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

18
import numpy as np
W
WuHaobo 已提交
19
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30 31
    "SE_ResNet18_vd", "SE_ResNet34_vd", "SE_ResNet50_vd", "SE_ResNet101_vd",
    "SE_ResNet152_vd", "SE_ResNet200_vd"
W
WuHaobo 已提交
32 33 34
]


littletomatodonkey's avatar
littletomatodonkey 已提交
35
class ConvBNLayer(nn.Layer):
36 37 38 39 40 41 42 43
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
44
            act=None,
45 46 47 48
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53 54 55
        self._pool2d_avg = AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)

        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
56
            stride=stride,
W
WuHaobo 已提交
57 58
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
59
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
60 61 62 63 64
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
65 66
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
67 68 69 70 71 72
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

73 74 75 76 77 78 79 80
    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
81
class BottleneckBlock(nn.Layer):
82 83 84 85 86 87 88 89 90 91 92 93
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
94 95 96 97
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
98 99
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
100 101 102 103 104
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
105 106
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
107 108 109 110
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")
111
        self.scale = SELayer(
W
WuHaobo 已提交
112
            num_channels=num_filters * 4,
113
            num_filters=num_filters * 4,
W
WuHaobo 已提交
114 115 116
            reduction_ratio=reduction_ratio,
            name='fc_' + name)

117 118 119 120 121 122 123 124 125 126
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut
W
WuHaobo 已提交
127

128 129 130 131 132
    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
        scale = self.scale(conv2)
W
WuHaobo 已提交
133

134 135 136 137
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
138
        y = paddle.elementwise_add(x=short, y=scale, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
139
        return y
140 141


littletomatodonkey's avatar
littletomatodonkey 已提交
142
class BasicBlock(nn.Layer):
143 144 145 146 147 148 149 150
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 reduction_ratio=16,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        super(BasicBlock, self).__init__()
152 153 154
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
155 156 157
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
158
            act='relu',
W
WuHaobo 已提交
159
            name=name + "_branch2a")
160 161
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
162 163 164 165
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")
166 167

        self.scale = SELayer(
W
WuHaobo 已提交
168
            num_channels=num_filters,
169
            num_filters=num_filters,
W
WuHaobo 已提交
170 171
            reduction_ratio=reduction_ratio,
            name='fc_' + name)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        scale = self.scale(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
193
        y = paddle.elementwise_add(x=short, y=scale, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
194
        return y
195 196


littletomatodonkey's avatar
littletomatodonkey 已提交
197
class SELayer(nn.Layer):
198 199 200
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
201
        self.pool2d_gap = AdaptiveAvgPool2d(1)
202 203 204 205 206 207 208 209

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
littletomatodonkey's avatar
littletomatodonkey 已提交
210 211
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
W
WuHaobo 已提交
212
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
213 214 215 216 217

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
littletomatodonkey's avatar
littletomatodonkey 已提交
218 219
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
W
WuHaobo 已提交
220 221
            bias_attr=ParamAttr(name=name + '_exc_offset'))

222 223
    def forward(self, input):
        pool = self.pool2d_gap(input)
littletomatodonkey's avatar
littletomatodonkey 已提交
224
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
225
        squeeze = self.squeeze(pool)
littletomatodonkey's avatar
littletomatodonkey 已提交
226
        squeeze = F.relu(squeeze)
227
        excitation = self.excitation(squeeze)
littletomatodonkey's avatar
littletomatodonkey 已提交
228 229
        excitation = F.sigmoid(excitation)
        excitation = paddle.reshape(
230 231 232
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out
W
WuHaobo 已提交
233

234

littletomatodonkey's avatar
littletomatodonkey 已提交
235
class SE_ResNet_vd(nn.Layer):
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    def __init__(self, layers=50, class_dim=1000):
        super(SE_ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
littletomatodonkey's avatar
littletomatodonkey 已提交
280
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310

        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
311
                    basic_block = self.add_sublayer(
312
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
313
                        BasicBlock(
314 315 316 317 318 319 320
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
321
                    self.block_list.append(basic_block)
322 323
                    shortcut = True

littletomatodonkey's avatar
littletomatodonkey 已提交
324
        self.pool2d_avg = AdaptiveAvgPool2d(1)
325 326 327 328 329 330 331 332

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
333 334
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc6_weights"),
335 336 337 338 339 340 341 342 343 344
            bias_attr=ParamAttr(name="fc6_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
345
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
346 347 348 349 350 351
        y = self.out(y)
        return y


def SE_ResNet18_vd(**args):
    model = SE_ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
352 353 354
    return model


355 356
def SE_ResNet34_vd(**args):
    model = SE_ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
357 358 359
    return model


360 361
def SE_ResNet50_vd(**args):
    model = SE_ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
362 363 364
    return model


365 366
def SE_ResNet101_vd(**args):
    model = SE_ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
367 368 369
    return model


370 371
def SE_ResNet152_vd(**args):
    model = SE_ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
372 373 374
    return model


375 376
def SE_ResNet200_vd(**args):
    model = SE_ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
377
    return model