resnet_vd.py 9.9 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
31 32 33
]


littletomatodonkey's avatar
littletomatodonkey 已提交
34
class ConvBNLayer(nn.Layer):
35 36 37 38 39 40 41 42
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
43
            act=None,
44 45 46 47
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51 52 53
        self._pool2d_avg = AvgPool2d(
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
54
            stride=stride,
W
WuHaobo 已提交
55 56
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
57
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
58 59 60 61 62
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
63 64
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
65
            act=act,
66 67 68 69 70 71 72 73 74 75 76 77
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
78

littletomatodonkey's avatar
littletomatodonkey 已提交
79
class BottleneckBlock(nn.Layer):
80 81 82 83 84 85 86 87 88 89 90
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
91 92 93 94
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
95 96
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
97 98 99 100 101
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
102 103
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
104 105 106 107 108
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
124

125 126 127 128
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
129
        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
130
        return y
W
WuHaobo 已提交
131

132

littletomatodonkey's avatar
littletomatodonkey 已提交
133
class BasicBlock(nn.Layer):
134 135 136 137 138 139 140
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
141
        super(BasicBlock, self).__init__()
142 143 144
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
145 146 147
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
148
            act='relu',
W
WuHaobo 已提交
149
            name=name + "_branch2a")
150 151
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
152 153 154 155 156
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
176
        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
littletomatodonkey's avatar
littletomatodonkey 已提交
177
        return y
178 179


littletomatodonkey's avatar
littletomatodonkey 已提交
180
class ResNet_vd(nn.Layer):
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
littletomatodonkey's avatar
littletomatodonkey 已提交
225
        self.pool2d_max = MaxPool2d(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
256
                    basic_block = self.add_sublayer(
257
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
258
                        BasicBlock(
259 260 261 262 263 264 265
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
266
                    self.block_list.append(basic_block)
267 268
                    shortcut = True

littletomatodonkey's avatar
littletomatodonkey 已提交
269
        self.pool2d_avg = AdaptiveAvgPool2d(1)
270 271 272 273 274 275 276 277

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
278 279
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
280 281 282 283 284 285 286 287 288 289
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
290
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
291 292 293 294 295 296
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
297 298 299
    return model


300 301
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
302 303 304
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
305
def ResNet50_vd(**args):
306
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
307 308 309
    return model


310 311
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
312 313 314
    return model


315 316
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
317 318 319
    return model


320 321
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
322
    return model