mobilenet_v2.py 7.1 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
18 19 20

import numpy as np
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25
from paddle.nn import Conv2d, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2d, MaxPool2d, AvgPool2d
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30 31
    "MobileNetV2_x0_25", "MobileNetV2_x0_5", "MobileNetV2_x0_75",
    "MobileNetV2", "MobileNetV2_x1_5", "MobileNetV2_x2_0"
W
WuHaobo 已提交
32 33 34
]


littletomatodonkey's avatar
littletomatodonkey 已提交
35
class ConvBNLayer(nn.Layer):
36 37 38 39 40 41 42 43 44 45 46 47
    def __init__(self,
                 num_channels,
                 filter_size,
                 num_filters,
                 stride,
                 padding,
                 channels=None,
                 num_groups=1,
                 name=None,
                 use_cudnn=True):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50 51
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
52 53 54
            stride=stride,
            padding=padding,
            groups=num_groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
55
            weight_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
56
            bias_attr=False)
57 58 59 60 61 62 63 64 65 66 67

        self._batch_norm = BatchNorm(
            num_filters,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, inputs, if_act=True):
        y = self._conv(inputs)
        y = self._batch_norm(y)
W
WuHaobo 已提交
68
        if if_act:
littletomatodonkey's avatar
littletomatodonkey 已提交
69
            y = F.relu6(y)
70
        return y
W
WuHaobo 已提交
71

72

littletomatodonkey's avatar
littletomatodonkey 已提交
73
class InvertedResidualUnit(nn.Layer):
74 75 76 77 78 79
    def __init__(self, num_channels, num_in_filter, num_filters, stride,
                 filter_size, padding, expansion_factor, name):
        super(InvertedResidualUnit, self).__init__()
        num_expfilter = int(round(num_in_filter * expansion_factor))
        self._expand_conv = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
80 81 82 83 84
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
85
            name=name + "_expand")
W
WuHaobo 已提交
86

87 88
        self._bottleneck_conv = ConvBNLayer(
            num_channels=num_expfilter,
W
WuHaobo 已提交
89 90 91 92 93
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
94 95
            use_cudnn=False,
            name=name + "_dwise")
W
WuHaobo 已提交
96

97 98
        self._linear_conv = ConvBNLayer(
            num_channels=num_expfilter,
W
WuHaobo 已提交
99 100 101 102 103
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
104 105 106 107 108 109
            name=name + "_linear")

    def forward(self, inputs, ifshortcut):
        y = self._expand_conv(inputs, if_act=True)
        y = self._bottleneck_conv(y, if_act=True)
        y = self._linear_conv(y, if_act=False)
W
WuHaobo 已提交
110
        if ifshortcut:
littletomatodonkey's avatar
littletomatodonkey 已提交
111
            y = paddle.elementwise_add(inputs, y)
112 113 114
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
115
class InvresiBlocks(nn.Layer):
116 117 118 119 120
    def __init__(self, in_c, t, c, n, s, name):
        super(InvresiBlocks, self).__init__()

        self._first_block = InvertedResidualUnit(
            num_channels=in_c,
W
WuHaobo 已提交
121 122 123 124 125 126
            num_in_filter=in_c,
            num_filters=c,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t,
127
            name=name + "_1")
W
WuHaobo 已提交
128

129
        self._block_list = []
W
WuHaobo 已提交
130
        for i in range(1, n):
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            block = self.add_sublayer(
                name + "_" + str(i + 1),
                sublayer=InvertedResidualUnit(
                    num_channels=c,
                    num_in_filter=c,
                    num_filters=c,
                    stride=1,
                    filter_size=3,
                    padding=1,
                    expansion_factor=t,
                    name=name + "_" + str(i + 1)))
            self._block_list.append(block)

    def forward(self, inputs):
        y = self._first_block(inputs, ifshortcut=False)
        for block in self._block_list:
            y = block(y, ifshortcut=True)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
151
class MobileNet(nn.Layer):
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    def __init__(self, class_dim=1000, scale=1.0):
        super(MobileNet, self).__init__()
        self.scale = scale
        self.class_dim = class_dim

        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        self.conv1 = ConvBNLayer(
            num_channels=3,
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1,
            name="conv1_1")

        self.block_list = []
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            block = self.add_sublayer(
                "conv" + str(i),
                sublayer=InvresiBlocks(
                    in_c=in_c,
                    t=t,
                    c=int(c * scale),
                    n=n,
                    s=s,
                    name="conv" + str(i)))
            self.block_list.append(block)
            in_c = int(c * scale)

        self.out_c = int(1280 * scale) if scale > 1.0 else 1280
        self.conv9 = ConvBNLayer(
            num_channels=in_c,
            num_filters=self.out_c,
            filter_size=1,
            stride=1,
            padding=0,
            name="conv9")

littletomatodonkey's avatar
littletomatodonkey 已提交
202
        self.pool2d_avg = AdaptiveAvgPool2d(1)
203 204 205 206

        self.out = Linear(
            self.out_c,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
207
            weight_attr=ParamAttr(name="fc10_weights"),
208 209 210 211 212 213 214 215
            bias_attr=ParamAttr(name="fc10_offset"))

    def forward(self, inputs):
        y = self.conv1(inputs, if_act=True)
        for block in self.block_list:
            y = block(y)
        y = self.conv9(y, if_act=True)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
216
        y = paddle.reshape(y, shape=[-1, self.out_c])
217 218 219 220 221 222
        y = self.out(y)
        return y


def MobileNetV2_x0_25(**args):
    model = MobileNet(scale=0.25, **args)
W
WuHaobo 已提交
223 224 225
    return model


226 227
def MobileNetV2_x0_5(**args):
    model = MobileNet(scale=0.5, **args)
W
WuHaobo 已提交
228 229 230
    return model


231 232
def MobileNetV2_x0_75(**args):
    model = MobileNet(scale=0.75, **args)
W
WuHaobo 已提交
233 234 235
    return model


236 237
def MobileNetV2(**args):
    model = MobileNet(scale=1.0, **args)
W
WuHaobo 已提交
238 239 240
    return model


241 242
def MobileNetV2_x1_5(**args):
    model = MobileNet(scale=1.5, **args)
W
WuHaobo 已提交
243 244 245
    return model


246 247
def MobileNetV2_x2_0(**args):
    model = MobileNet(scale=2.0, **args)
W
WuHaobo 已提交
248
    return model