ghostnet.py 13.6 KB
Newer Older
W
wqz960 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
from __future__ import absolute_import 
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid 
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import MSRA
from paddle.fluid.contrib.model_stat import summary

__all__ = ["GhostNet", "GhostNet_0_5", "GhostNet_1_0", "GhostNet_1_3"]

class GhostNet():
    def __init__(self, width_mult):
        cfgs = [
                    # k, t, c, SE, s 
                    [3,  16,  16, 0, 1],
                    [3,  48,  24, 0, 2],
                    [3,  72,  24, 0, 1],
                    [5,  72,  40, 1, 2],
                    [5, 120,  40, 1, 1],
                    [3, 240,  80, 0, 2],
                    [3, 200,  80, 0, 1],
                    [3, 184,  80, 0, 1],
                    [3, 184,  80, 0, 1],
                    [3, 480, 112, 1, 1],
                    [3, 672, 112, 1, 1],
                    [5, 672, 160, 1, 2],
                    [5, 960, 160, 0, 1],
                    [5, 960, 160, 1, 1],
                    [5, 960, 160, 0, 1],
                    [5, 960, 160, 1, 1]
                ]
        self.cfgs = cfgs
        self.width_mult = width_mult
    
    def _make_divisible(self, v, divisor, min_value=None):
        """
        This function is taken from the original tf repo.
        It ensures that all layers have a channel number that is divisible by 8
        It can be seen here:
        https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
        """
        if min_value is None:
            min_value = divisor
        new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
        # Make sure that round down does not go down by more than 10%.
        if new_v < 0.9 * v:
            new_v += divisor
        return new_v
    
    def conv_bn_layer(self, 
                      input, 
                      num_filters,
                      filter_size,
                      stride=1,
                      groups=1,
                      act=None,
                      name=None,
                      data_format="NCHW"):
        x = fluid.layers.conv2d(input=input,
                                   num_filters=num_filters,
                                   filter_size=filter_size,
                                   stride=stride,
                                   padding=(filter_size-1)//2,
                                   groups=groups,
                                   act=None,
                                   param_attr=ParamAttr(
                                       initializer=fluid.initializer.MSRA(),name=name+"_weights"),
                                   bias_attr=False,
                                   name=name+"_conv_op",
                                   data_format=data_format)
        
        x = fluid.layers.batch_norm(input=x,
                                   act=act,
                                   name=name+"_bn",
                                   param_attr=ParamAttr(name=name+"_bn_scale", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
                                   bias_attr=ParamAttr(name=name+"_bn_offset", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
                                   moving_mean_name=name+"_bn_mean",
                                   moving_variance_name=name+"_bn_variance",
                                   data_layout=data_format)
        return x
        
    
    def SElayer(self,
                input,
                num_channels,
                reduction_ratio=4,
                name=None):
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        squeeze = fluid.layers.fc(
            input=pool,
            size=num_channels // reduction_ratio,
            act='relu',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name=name + '_sqz_weights'),
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
        excitation = fluid.layers.fc(
            input=squeeze,
            size=num_channels,
            act=None,
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name=name + '_exc_weights'),
            bias_attr=ParamAttr(name=name + '_exc_offset'))
        excitation = fluid.layers.clip(x=excitation,
                                       min=0,
                                       max=1,
                                       name=name+'_clip')
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale
    
    def depthwise_conv(self, 
                      inp,
                      oup,
                      kernel_size,
                      stride=1,
                      relu=False,
                      name=None,
                      data_format="NCHW"):
        return self.conv_bn_layer(input=inp, 
                                  num_filters=oup,
                                  filter_size=kernel_size,
                                  stride=stride,
                                  groups=inp.shape[1] if data_format=="NCHW" else inp.shape[-1],
                                  act="relu" if relu else None,
                                  name=name+"_dw",
                                  data_format=data_format)
    
    def GhostModule(self,
                    inp,
                    oup,
                    kernel_size=1,
                    ratio=2,
                    dw_size=3,
                    stride=1,
                    relu=True,
                    name=None,
                    data_format="NCHW"):
        self.oup=oup
        init_channels = int(math.ceil(oup/ratio))
        new_channels = int(init_channels*(ratio-1))
        primary_conv = self.conv_bn_layer(input=inp, 
                                          num_filters=init_channels,
                                          filter_size=kernel_size,
                                          stride=stride,
                                          groups=1,
                                          act="relu" if relu else None,
                                          name=name+"_primary_conv",
                                          data_format="NCHW")
        cheap_operation = self.conv_bn_layer(input=primary_conv,
                                            num_filters=new_channels,
                                            filter_size=dw_size,
                                            stride=1,
                                            groups=init_channels,
                                            act="relu" if relu else None,
                                            name=name+"_cheap_operation",
                                            data_format=data_format)
        out = fluid.layers.concat([primary_conv, cheap_operation], axis=1, name=name+"_concat")
W
wqz960 已提交
166
        return out
W
wqz960 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    
    def GhostBottleneck(self,
                        inp,
                        hidden_dim,
                        oup,
                        kernel_size, 
                        stride,
                        use_se,
                        name=None,
                        data_format="NCHW"):
        inp_channels = inp.shape[1]
        x = self.GhostModule(inp=inp,
                            oup=hidden_dim,
                            kernel_size=1,
                            stride=1,
                            relu=True,
                            name=name+"GhostBottle_1",
                            data_format="NCHW")
        if stride==2:
            x = self.depthwise_conv(inp=x,
                                      oup=hidden_dim,
                                      kernel_size=kernel_size,
                                      stride=stride,
                                      relu=False,
                                      name=name+"_dw2",
                                      data_format="NCHW")
        if use_se:
            x = self.SElayer(input=x,
                        num_channels=hidden_dim,
                        name=name+"SElayer")
        x = self.GhostModule(inp=x,
                             oup=oup,
                             kernel_size=1,
                             relu=False,
                             name=name+"GhostModule_2")
        if stride==1 and inp_channels==oup:
            shortcut = inp
        else:
            shortcut = self.depthwise_conv(inp=inp,
                                           oup=inp_channels,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           relu=False,
                                           name=name+"shortcut_depthwise_conv",
                                           data_format="NCHW")
            shortcut = self.conv_bn_layer(input=shortcut, 
                                          num_filters=oup,
                                          filter_size=1,
                                          stride=1,
                                          groups=1,
                                          act=None,
                                          name=name+"shortcut_conv_bn",
                                          data_format="NCHW")
        return fluid.layers.elementwise_add(x=x,
                                            y=shortcut,
                                            axis=-1,
                                            act=None,
                                            name=name+"elementwise_add")
    
    def net(self,
            input,
            class_dim=1000):
        #build first layer:
        output_channel = int(self._make_divisible(16*self.width_mult, 4))
        #print(output_channel)
        x = self.conv_bn_layer(input=input, 
                                num_filters=output_channel,
                                filter_size=3,
                                stride=2,
                                groups=1,
                                act="relu",
                                name="firstlayer",
                                data_format="NCHW")
        input_channel = output_channel
        #build inverted residual blocks
        idx = 0
        fm = {}
        for k, exp_size, c, use_se, s in self.cfgs:
            output_channel = int(self._make_divisible(c*self.width_mult, 4))
            hidden_channel = int(self._make_divisible(exp_size*self.width_mult, 4))
            x = self.GhostBottleneck(inp=x,
                                    hidden_dim=hidden_channel,
                                    oup=output_channel,
                                    kernel_size=k, 
                                    stride=s,
                                    use_se=use_se,
                                    name="GhostBottle_"+str(idx),
                                    data_format="NCHW")
            input_channel = output_channel
            fm[str(idx)] = x
            idx+=1
        #build last several layers
        output_channel = int(self._make_divisible(exp_size * self.width_mult, 4))
        x = self.conv_bn_layer(input=x,
                               num_filters=output_channel,
                               filter_size=1, 
                               stride=1,
                               groups=1,
                               act="relu",
                               name="lastlayer",
                               data_format="NCHW")
        x = fluid.layers.pool2d(input=x,
                               pool_type='avg',
                               global_pooling=True,
                               data_format="NCHW")
        input_channel = output_channel
        output_channel = 1280
        
        stdv = 1.0/math.sqrt(x.shape[1]*1.0)
        out = fluid.layers.conv2d(input=x,
                                  num_filters=output_channel,
                                  filter_size=1,
                                  groups=1,
                                  param_attr=ParamAttr(name="fc_0_w", initializer=fluid.initializer.Uniform(-stdv, stdv)),
                                  bias_attr=False,
                                  name="fc_0")
        out = fluid.layers.batch_norm(input=out,
                                      act="relu",
                                      name="fc_0_bn",
                                      param_attr=ParamAttr(name="fc_0_bn_scale", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
                                      bias_attr=ParamAttr(name="fc_0_bn_offset", regularizer=fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)),
                                      moving_mean_name="fc_0_bn_mean",
                                      moving_variance_name="fc_0_bn_variance",
                                      data_layout="NCHW")
        out = fluid.layers.dropout(x=out, dropout_prob=0.2)
        stdv = 1.0/math.sqrt(out.shape[1]*1.0)
        out = fluid.layers.fc(input=out,
                             size=class_dim,
                             param_attr=ParamAttr(name="fc_1_w", initializer=fluid.initializer.Uniform(-stdv, stdv)),
                             bias_attr=ParamAttr(name="fc_1_bias"))

        return out, fm
    
def GhostNet_0_5():
    model = GhostNet(width_mult=0.5)
    return model

def GhostNet_1_0():
    model = GhostNet(width_mult=1.0)
    return model                   

def GhostNet_1_3():
    model = GhostNet(width_mult=1.3)
    return model