ESNet.md 5.2 KB
Newer Older
1
# ESNet 系列
G
gaotingquan 已提交
2 3
-----

S
sibo2rr 已提交
4
## 目录
C
cuicheng01 已提交
5

G
gaotingquan 已提交
6 7 8 9 10 11 12 13 14 15 16 17
- [1. 模型介绍](#1)
    - [1.1 模型简介](#1.1)
    - [1.2 模型指标](#1.2)
- [2. 模型快速体验](#2)
- [3. 模型训练、评估和预测](#3)
- [4. 模型推理部署](#4)
  - [4.1 推理模型准备](#4.1)
  - [4.2 基于 Python 预测引擎推理](#4.2)
  - [4.3 基于 C++ 预测引擎推理](#4.3)
  - [4.4 服务化部署](#4.4)
  - [4.5 端侧部署](#4.5)
  - [4.6 Paddle2ONNX 模型转换与预测](#4.6)
C
cuicheng01 已提交
18

S
sibo2rr 已提交
19
<a name='1'></a>
C
cuicheng01 已提交
20

G
gaotingquan 已提交
21 22 23 24 25
## 1. 模型介绍

<a name='1.1'></a>

### 1.1 模型简介
S
sibo2rr 已提交
26 27 28

ESNet(Enhanced ShuffleNet)是百度自研的一个轻量级网络,该网络在 ShuffleNetV2 的基础上融合了 MobileNetV3、GhostNet、PPLCNet 的优点,组合成了一个在 ARM 设备上速度更快、精度更高的网络,由于其出色的表现,所以在 PaddleDetection 推出的 [PP-PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/picodet) 使用了该模型做 backbone,配合更强的目标检测算法,最终的指标一举刷新了目标检测模型在 ARM 设备上的 SOTA 指标。

G
gaotingquan 已提交
29
<a name='1.2'></a>
S
sibo2rr 已提交
30

G
gaotingquan 已提交
31
### 1.2 模型指标
C
cuicheng01 已提交
32 33 34

| Models | Top1 | Top5 | FLOPs<br>(M) | Params<br/>(M) |
|:--:|:--:|:--:|:--:|:--:|
G
gaotingquan 已提交
35 36 37 38
| ESNet_x0_25 | 62.48 | 83.46 | - | - | 30.9  | 2.83 |
| ESNet_x0_5  | 68.82 | 88.04 | - | - | 67.3  | 3.25 |
| ESNet_x0_75 | 72.24 | 90.45 | - | - | 123.7 | 3.87 |
| ESNet_x1_0  | 73.92 | 91.40 | - | - | 197.3 | 4.64 |
C
cuicheng01 已提交
39

S
sibo2rr 已提交
40
关于 Inference speed 等信息,敬请期待。
G
gaotingquan 已提交
41 42 43 44 45 46 47 48 49 50 51

<a name="2"></a>  

## 2. 模型快速体验

安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)

<a name="3"></a>

## 3. 模型训练、评估和预测

G
gaotingquan 已提交
52
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/ESNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)
G
gaotingquan 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

<a name="4"></a>

## 4. 模型推理部署

<a name="4.1"></a>

### 4.1 推理模型准备

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)

Inference 的获取可以参考 [ResNet50 推理模型准备](./ResNet.md#41-推理模型准备)

<a name="4.2"></a>

### 4.2 基于 Python 预测引擎推理

G
gaotingquan 已提交
70
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理)
G
gaotingquan 已提交
71 72 73 74 75

<a name="4.3"></a>

### 4.3 基于 C++ 预测引擎推理

G
gaotingquan 已提交
76
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
G
gaotingquan 已提交
77 78 79 80 81 82 83

<a name="4.4"></a>

### 4.4 服务化部署

Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)

G
gaotingquan 已提交
84
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
G
gaotingquan 已提交
85 86 87 88 89 90 91

<a name="4.5"></a>

### 4.5 端侧部署

Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)

G
gaotingquan 已提交
92
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
G
gaotingquan 已提交
93 94 95 96 97 98 99

<a name="4.6"></a>

### 4.6 Paddle2ONNX 模型转换与预测

Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)

G
gaotingquan 已提交
100
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。