ResNet50_vd_finetune_retrieval.yaml 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: "./output/"
  device: "gpu"
  class_num: 102
  save_interval: 1
  eval_mode: "retrieval"
  eval_during_train: True
  eval_interval: 1
  epochs: 20
  print_batch_step: 10
  use_visualdl: False
  image_shape: [3, 224, 224]

  #inference related
  save_inference_dir: "./inference"

Arch:
  name: "RecModel"
  infer_output_key:  "features"
  infer_add_softmax: "false"
  Backbone:
    name: "ResNet50_vd"
    pretrained: False
  BackboneStopLayer: 
    name: "flatten_0"
    output_dim: 2048
  Head:
    name: "FC"
    class_num: 102
    embedding_size: 2048

Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Piecewise
    learning_rate: 0.1
    decay_epochs: [30, 60, 90]
    values: [0.1, 0.01, 0.001, 0.0001]
  regularizer:
    name: 'L2'
    coeff: 0.0001

DataLoader:
  Train:
    dataset:
        name: ImageNetDataset
        image_root:  "./dataset/flowers102/"
        cls_label_path:  "./dataset/flowers102/train_list.txt"
        transform_ops:
          - RandCropImage:
              size: 224
          - RandFlipImage:
              flip_code: 1
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
    sampler:
        name: DistributedBatchSampler
        batch_size: 256
        drop_last: False
        shuffle: True
    loader:
        num_workers: 6
        use_shared_memory: False
  
  Eval:
    Query:
      dataset: 
          name: ImageNetDataset
          image_root: "./dataset/flowers102/"
          cls_label_path: "./dataset/flowers102/val_list.txt"
          transform_ops:
            - ResizeImage:
                resize_short: 256
            - CropImage:
                size: 224
            - NormalizeImage:
                scale: 0.00392157
                mean: [0.485, 0.456, 0.406]
                std: [0.229, 0.224, 0.225]
                order: ''
      sampler:
          name: DistributedBatchSampler
          batch_size: 512
          drop_last: False
          shuffle: False
      loader:
          num_workers: 6
          use_shared_memory: True

    Gallery:
      dataset: 
          name: ImageNetDataset
          image_root: "./dataset/flowers102/"
          cls_label_path: "./dataset/flowers102/train_list.txt"
          transform_ops:
            - ResizeImage:
                resize_short: 256
            - CropImage:
                size: 224
            - NormalizeImage:
                scale: 0.00392157
                mean: [0.485, 0.456, 0.406]
                std: [0.229, 0.224, 0.225]
                order: ''
      sampler:
          name: DistributedBatchSampler
          batch_size: 512
          drop_last: False
          shuffle: False
      loader:
          num_workers: 6
          use_shared_memory: True

Metric:
    Train:
    - TopkAcc:
        topk: [1, 5]
    Eval:
    - Recallk:
        topk: [1, 10]