operators.py 23.5 KB
Newer Older
F
Felix 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved
F
Felix 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

G
gaotingquan 已提交
20
from functools import partial
F
flytocc 已提交
21
import io
F
Felix 已提交
22 23 24 25 26
import six
import math
import random
import cv2
import numpy as np
H
HydrogenSulfate 已提交
27
from PIL import Image, ImageOps, __version__ as PILLOW_VERSION
G
gaotingquan 已提交
28
from paddle.vision.transforms import ColorJitter as RawColorJitter
29 30
from paddle.vision.transforms import ToTensor, Normalize, RandomHorizontalFlip, RandomResizedCrop
from paddle.vision.transforms import functional as F
F
Felix 已提交
31 32
from .autoaugment import ImageNetPolicy
from .functional import augmentations
G
gaotingquan 已提交
33 34 35 36
from ppcls.utils import logger


class UnifiedResize(object):
H
HydrogenSulfate 已提交
37
    def __init__(self, interpolation=None, backend="cv2", return_numpy=True):
G
gaotingquan 已提交
38 39 40 41 42
        _cv2_interp_from_str = {
            'nearest': cv2.INTER_NEAREST,
            'bilinear': cv2.INTER_LINEAR,
            'area': cv2.INTER_AREA,
            'bicubic': cv2.INTER_CUBIC,
43 44
            'lanczos': cv2.INTER_LANCZOS4,
            'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
G
gaotingquan 已提交
45 46 47 48 49 50 51
        }
        _pil_interp_from_str = {
            'nearest': Image.NEAREST,
            'bilinear': Image.BILINEAR,
            'bicubic': Image.BICUBIC,
            'box': Image.BOX,
            'lanczos': Image.LANCZOS,
52 53
            'hamming': Image.HAMMING,
            'random': (Image.BILINEAR, Image.BICUBIC)
G
gaotingquan 已提交
54 55
        }

56 57 58 59 60
        def _cv2_resize(src, size, resample):
            if isinstance(resample, tuple):
                resample = random.choice(resample)
            return cv2.resize(src, size, interpolation=resample)

H
HydrogenSulfate 已提交
61
        def _pil_resize(src, size, resample, return_numpy=True):
62 63
            if isinstance(resample, tuple):
                resample = random.choice(resample)
H
HydrogenSulfate 已提交
64 65
            if isinstance(src, np.ndarray):
                pil_img = Image.fromarray(src)
H
HydrogenSulfate 已提交
66 67
            else:
                pil_img = src
G
gaotingquan 已提交
68
            pil_img = pil_img.resize(size, resample)
H
HydrogenSulfate 已提交
69 70 71
            if return_numpy:
                return np.asarray(pil_img)
            return pil_img
G
gaotingquan 已提交
72 73 74 75

        if backend.lower() == "cv2":
            if isinstance(interpolation, str):
                interpolation = _cv2_interp_from_str[interpolation.lower()]
76
            # compatible with opencv < version 4.4.0
G
gaotingquan 已提交
77
            elif interpolation is None:
78
                interpolation = cv2.INTER_LINEAR
79
            self.resize_func = partial(_cv2_resize, resample=interpolation)
G
gaotingquan 已提交
80 81 82
        elif backend.lower() == "pil":
            if isinstance(interpolation, str):
                interpolation = _pil_interp_from_str[interpolation.lower()]
H
HydrogenSulfate 已提交
83 84
            self.resize_func = partial(
                _pil_resize, resample=interpolation, return_numpy=return_numpy)
G
gaotingquan 已提交
85 86 87 88 89 90 91
        else:
            logger.warning(
                f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
            )
            self.resize_func = cv2.resize

    def __call__(self, src, size):
H
HydrogenSulfate 已提交
92 93
        if isinstance(size, list):
            size = tuple(size)
G
gaotingquan 已提交
94
        return self.resize_func(src, size)
F
Felix 已提交
95

D
dongshuilong 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class RandomInterpolationAugment(object):
    def __init__(self, prob):
        self.prob = prob

    def _aug(self, img):
        img_shape = img.shape
        side_ratio = np.random.uniform(0.2, 1.0)
        small_side = int(side_ratio * img_shape[0])
        interpolation = np.random.choice([
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA,
            cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
        ])
        small_img = cv2.resize(
            img, (small_side, small_side), interpolation=interpolation)
        interpolation = np.random.choice([
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_AREA,
            cv2.INTER_CUBIC, cv2.INTER_LANCZOS4
        ])
        aug_img = cv2.resize(
            small_img, (img_shape[1], img_shape[0]),
            interpolation=interpolation)
        return aug_img

    def __call__(self, img):
        if np.random.random() < self.prob:
            if isinstance(img, np.ndarray):
                return self._aug(img)
            else:
                pil_img = np.array(img)
                aug_img = self._aug(pil_img)
                img = Image.fromarray(aug_img.astype(np.uint8))
                return img
        else:
            return img


F
Felix 已提交
133 134 135 136 137
class OperatorParamError(ValueError):
    """ OperatorParamError
    """
    pass

D
dongshuilong 已提交
138

F
Felix 已提交
139 140 141
class DecodeImage(object):
    """ decode image """

F
flytocc 已提交
142
    def __init__(self,
Y
Yang Nie 已提交
143
                 to_np=True,
F
flytocc 已提交
144 145
                 to_rgb=True,
                 channel_first=False,
Y
Yang Nie 已提交
146
                 backend="cv2"):
F
Felix 已提交
147
        self.to_np = to_np  # to numpy
Y
Yang Nie 已提交
148
        self.to_rgb = to_rgb  # only enabled when to_np is True
F
Felix 已提交
149 150
        self.channel_first = channel_first  # only enabled when to_np is True

F
flytocc 已提交
151 152
        if backend.lower() not in ["cv2", "pil"]:
            logger.warning(
Y
Yang Nie 已提交
153
                f"The backend of DecodeImage only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
F
flytocc 已提交
154 155 156 157
            )
            backend = "cv2"
        self.backend = backend.lower()

Y
Yang Nie 已提交
158 159 160 161
        if not to_np:
            logger.warning(
                f"\"to_rgb\" and \"channel_first\" are only enabled when to_np is True. \"to_np\" is now {to_np}."
            )
F
flytocc 已提交
162

F
Felix 已提交
163
    def __call__(self, img):
Y
Yang Nie 已提交
164
        if isinstance(img, Image.Image):
Y
Yang Nie 已提交
165
            assert self.backend == "pil", "invalid input 'img' in DecodeImage"
Y
Yang Nie 已提交
166
        elif isinstance(img, np.ndarray):
Y
Yang Nie 已提交
167 168
            assert self.backend == "cv2", "invalid input 'img' in DecodeImage"
        elif isinstance(img, bytes):
Y
Yang Nie 已提交
169 170
            if self.backend == "pil":
                data = io.BytesIO(img)
Y
Yang Nie 已提交
171
                img = Image.open(data)
Y
Yang Nie 已提交
172
            else:
Y
Yang Nie 已提交
173
                data = np.frombuffer(img, dtype="uint8")
Y
Yang Nie 已提交
174
                img = cv2.imdecode(data, 1)
Y
Yang Nie 已提交
175 176 177 178 179 180 181
        else:
            raise ValueError("invalid input 'img' in DecodeImage")

        if self.to_np:
            if self.backend == "pil":
                assert img.mode == "RGB", f"invalid shape of image[{img.shape}]"
                img = np.asarray(img)[:, :, ::-1]  # BRG
Y
Yang Nie 已提交
182 183

            if self.to_rgb:
Y
Yang Nie 已提交
184
                assert img.shape[2] == 3, f"invalid shape of image[{img.shape}]"
Y
Yang Nie 已提交
185 186 187 188
                img = img[:, :, ::-1]

            if self.channel_first:
                img = img.transpose((2, 0, 1))
F
Felix 已提交
189 190 191 192 193 194 195

        return img


class ResizeImage(object):
    """ resize image """

G
gaotingquan 已提交
196 197 198 199
    def __init__(self,
                 size=None,
                 resize_short=None,
                 interpolation=None,
H
HydrogenSulfate 已提交
200 201
                 backend="cv2",
                 return_numpy=True):
F
Felix 已提交
202 203 204 205 206 207 208 209 210 211 212 213
        if resize_short is not None and resize_short > 0:
            self.resize_short = resize_short
            self.w = None
            self.h = None
        elif size is not None:
            self.resize_short = None
            self.w = size if type(size) is int else size[0]
            self.h = size if type(size) is int else size[1]
        else:
            raise OperatorParamError("invalid params for ReisizeImage for '\
                'both 'size' and 'resize_short' are None")

G
gaotingquan 已提交
214
        self._resize_func = UnifiedResize(
H
HydrogenSulfate 已提交
215 216 217
            interpolation=interpolation,
            backend=backend,
            return_numpy=return_numpy)
G
gaotingquan 已提交
218

F
Felix 已提交
219
    def __call__(self, img):
H
HydrogenSulfate 已提交
220 221 222 223 224
        if isinstance(img, np.ndarray):
            img_h, img_w = img.shape[:2]
        else:
            img_w, img_h = img.size

F
Felix 已提交
225 226 227 228 229 230 231
        if self.resize_short is not None:
            percent = float(self.resize_short) / min(img_w, img_h)
            w = int(round(img_w * percent))
            h = int(round(img_h * percent))
        else:
            w = self.w
            h = self.h
G
gaotingquan 已提交
232
        return self._resize_func(img, (w, h))
F
Felix 已提交
233 234


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
class CropWithPadding(RandomResizedCrop):
    """
    crop image and padding to original size
    """

    def __init__(self,
                 prob=1,
                 padding_num=0,
                 size=224,
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
                 interpolation='bilinear',
                 key=None):
        super().__init__(size, scale, ratio, interpolation, key)
        self.prob = prob
        self.padding_num = padding_num

    def __call__(self, img):
        is_cv2_img = False
        if isinstance(img, np.ndarray):
            flag = True
        if np.random.random() < self.prob:
            # RandomResizedCrop augmentation
            new = np.zeros_like(np.array(img)) + self.padding_num
            #  orig_W, orig_H = F._get_image_size(sample)
            orig_W, orig_H = self._get_image_size(img)
            i, j, h, w = self._get_param(img)
            cropped = F.crop(img, i, j, h, w)
            new[i:i + h, j:j + w, :] = np.array(cropped)
            if not isinstance:
                new = Image.fromarray(new.astype(np.uint8))
            return new
        else:
            return img

    def _get_image_size(self, img):
        if F._is_pil_image(img):
            return img.size
        elif F._is_numpy_image(img):
            return img.shape[:2][::-1]
        elif F._is_tensor_image(img):
            return img.shape[1:][::-1]  # chw
        else:
            raise TypeError("Unexpected type {}".format(type(img)))


F
Felix 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
class CropImage(object):
    """ crop image """

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size  # (h, w)

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


Z
zhiboniu 已提交
301
class Padv2(object):
Z
zhiboniu 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def __init__(self,
                 size=None,
                 size_divisor=32,
                 pad_mode=0,
                 offsets=None,
                 fill_value=(127.5, 127.5, 127.5)):
        """
        Pad image to a specified size or multiple of size_divisor.
        Args:
            size (int, list): image target size, if None, pad to multiple of size_divisor, default None
            size_divisor (int): size divisor, default 32
            pad_mode (int): pad mode, currently only supports four modes [-1, 0, 1, 2]. if -1, use specified offsets
                if 0, only pad to right and bottom. if 1, pad according to center. if 2, only pad left and top
            offsets (list): [offset_x, offset_y], specify offset while padding, only supported pad_mode=-1
            fill_value (bool): rgb value of pad area, default (127.5, 127.5, 127.5)
        """

        if not isinstance(size, (int, list)):
            raise TypeError(
                "Type of target_size is invalid when random_size is True. \
                            Must be List, now is {}".format(type(size)))

        if isinstance(size, int):
            size = [size, size]

        assert pad_mode in [
            -1, 0, 1, 2
        ], 'currently only supports four modes [-1, 0, 1, 2]'
        if pad_mode == -1:
            assert offsets, 'if pad_mode is -1, offsets should not be None'

        self.size = size
        self.size_divisor = size_divisor
        self.pad_mode = pad_mode
        self.fill_value = fill_value
        self.offsets = offsets

    def apply_image(self, image, offsets, im_size, size):
        x, y = offsets
        im_h, im_w = im_size
        h, w = size
        canvas = np.ones((h, w, 3), dtype=np.float32)
        canvas *= np.array(self.fill_value, dtype=np.float32)
        canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
        return canvas

    def __call__(self, img):
        im_h, im_w = img.shape[:2]
        if self.size:
            w, h = self.size
            assert (
                im_h <= h and im_w <= w
            ), '(h, w) of target size should be greater than (im_h, im_w)'
        else:
            h = int(np.ceil(im_h / self.size_divisor) * self.size_divisor)
            w = int(np.ceil(im_w / self.size_divisor) * self.size_divisor)

        if h == im_h and w == im_w:
            return img.astype(np.float32)

        if self.pad_mode == -1:
            offset_x, offset_y = self.offsets
        elif self.pad_mode == 0:
            offset_y, offset_x = 0, 0
        elif self.pad_mode == 1:
            offset_y, offset_x = (h - im_h) // 2, (w - im_w) // 2
        else:
            offset_y, offset_x = h - im_h, w - im_w

        offsets, im_size, size = [offset_x, offset_y], [im_h, im_w], [h, w]

        return self.apply_image(img, offsets, im_size, size)


class RandomCropImage(object):
    """Random crop image only
    """

    def __init__(self, size):
        super(RandomCropImage, self).__init__()
        if isinstance(size, int):
            size = [size, size]
        self.size = size

    def __call__(self, img):

        h, w = img.shape[:2]
        tw, th = self.size
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)

        img = img[i:i + th, j:j + tw, :]
        return img


F
Felix 已提交
397 398 399
class RandCropImage(object):
    """ random crop image """

G
gaotingquan 已提交
400 401 402 403 404 405
    def __init__(self,
                 size,
                 scale=None,
                 ratio=None,
                 interpolation=None,
                 backend="cv2"):
F
Felix 已提交
406 407 408 409 410 411 412 413
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

        self.scale = [0.08, 1.0] if scale is None else scale
        self.ratio = [3. / 4., 4. / 3.] if ratio is None else ratio

G
gaotingquan 已提交
414 415 416
        self._resize_func = UnifiedResize(
            interpolation=interpolation, backend=backend)

F
Felix 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    def __call__(self, img):
        size = self.size
        scale = self.scale
        ratio = self.ratio

        aspect_ratio = math.sqrt(random.uniform(*ratio))
        w = 1. * aspect_ratio
        h = 1. / aspect_ratio

        img_h, img_w = img.shape[:2]

        bound = min((float(img_w) / img_h) / (w**2),
                    (float(img_h) / img_w) / (h**2))
        scale_max = min(scale[1], bound)
        scale_min = min(scale[0], bound)

        target_area = img_w * img_h * random.uniform(scale_min, scale_max)
        target_size = math.sqrt(target_area)
        w = int(target_size * w)
        h = int(target_size * h)

        i = random.randint(0, img_w - w)
        j = random.randint(0, img_h - h)

        img = img[j:j + h, i:i + w, :]
G
gaotingquan 已提交
442 443

        return self._resize_func(img, size)
F
Felix 已提交
444 445


H
HydrogenSulfate 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458
class RandCropImageV2(object):
    """ RandCropImageV2 is different from RandCropImage,
    it will Select a cutting position randomly in a uniform distribution way,
    and cut according to the given size without resize at last."""

    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)  # (h, w)
        else:
            self.size = size

    def __call__(self, img):
        if isinstance(img, np.ndarray):
H
HydrogenSulfate 已提交
459
            img_h, img_w = img.shape[0], img.shape[1]
H
HydrogenSulfate 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
        else:
            img_w, img_h = img.size
        tw, th = self.size

        if img_h + 1 < th or img_w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".
                format((th, tw), (img_h, img_w)))

        if img_w == tw and img_h == th:
            return img

        top = random.randint(0, img_h - th + 1)
        left = random.randint(0, img_w - tw + 1)
        if isinstance(img, np.ndarray):
            return img[top:top + th, left:left + tw, :]
        else:
            return img.crop((left, top, left + tw, top + th))


F
Felix 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
class RandFlipImage(object):
    """ random flip image
        flip_code:
            1: Flipped Horizontally
            0: Flipped Vertically
            -1: Flipped Horizontally & Vertically
    """

    def __init__(self, flip_code=1):
        assert flip_code in [-1, 0, 1
                             ], "flip_code should be a value in [-1, 0, 1]"
        self.flip_code = flip_code

    def __call__(self, img):
        if random.randint(0, 1) == 1:
H
HydrogenSulfate 已提交
495 496 497 498
            if isinstance(img, np.ndarray):
                return cv2.flip(img, self.flip_code)
            else:
                return img.transpose(Image.FLIP_LEFT_RIGHT)
F
Felix 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
        else:
            return img


class AutoAugment(object):
    def __init__(self):
        self.policy = ImageNetPolicy()

    def __call__(self, img):
        from PIL import Image
        img = np.ascontiguousarray(img)
        img = Image.fromarray(img)
        img = self.policy(img)
        img = np.asarray(img)


class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

littletomatodonkey's avatar
littletomatodonkey 已提交
519 520 521 522 523 524 525
    def __init__(self,
                 scale=None,
                 mean=None,
                 std=None,
                 order='chw',
                 output_fp16=False,
                 channel_num=3):
F
Felix 已提交
526 527
        if isinstance(scale, str):
            scale = eval(scale)
littletomatodonkey's avatar
littletomatodonkey 已提交
528 529 530 531 532
        assert channel_num in [
            3, 4
        ], "channel number of input image should be set to 3 or 4."
        self.channel_num = channel_num
        self.output_dtype = 'float16' if output_fp16 else 'float32'
F
Felix 已提交
533
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
littletomatodonkey's avatar
littletomatodonkey 已提交
534
        self.order = order
F
Felix 已提交
535 536 537
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

littletomatodonkey's avatar
littletomatodonkey 已提交
538
        shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
F
Felix 已提交
539 540 541 542 543 544 545 546 547 548
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
littletomatodonkey's avatar
littletomatodonkey 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562

        img = (img.astype('float32') * self.scale - self.mean) / self.std

        if self.channel_num == 4:
            img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
            img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
            pad_zeros = np.zeros(
                (1, img_h, img_w)) if self.order == 'chw' else np.zeros(
                    (img_h, img_w, 1))
            img = (np.concatenate(
                (img, pad_zeros), axis=0)
                   if self.order == 'chw' else np.concatenate(
                       (img, pad_zeros), axis=2))
        return img.astype(self.output_dtype)
F
Felix 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self):
        pass

    def __call__(self, img):
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)

        return img.transpose((2, 0, 1))


class AugMix(object):
    """ Perform AugMix augmentation and compute mixture.
    """

D
dongshuilong 已提交
584 585 586 587 588 589
    def __init__(self,
                 prob=0.5,
                 aug_prob_coeff=0.1,
                 mixture_width=3,
                 mixture_depth=1,
                 aug_severity=1):
F
Felix 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        """
        Args:
            prob: Probability of taking augmix
            aug_prob_coeff: Probability distribution coefficients.
            mixture_width: Number of augmentation chains to mix per augmented example.
            mixture_depth: Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]'
            aug_severity: Severity of underlying augmentation operators (between 1 to 10).
        """
        # fmt: off
        self.prob = prob
        self.aug_prob_coeff = aug_prob_coeff
        self.mixture_width = mixture_width
        self.mixture_depth = mixture_depth
        self.aug_severity = aug_severity
        self.augmentations = augmentations
        # fmt: on

    def __call__(self, image):
        """Perform AugMix augmentations and compute mixture.
        Returns:
          mixed: Augmented and mixed image.
        """
        if random.random() > self.prob:
            # Avoid the warning: the given NumPy array is not writeable
            return np.asarray(image).copy()

        ws = np.float32(
            np.random.dirichlet([self.aug_prob_coeff] * self.mixture_width))
D
dongshuilong 已提交
618 619
        m = np.float32(
            np.random.beta(self.aug_prob_coeff, self.aug_prob_coeff))
F
Felix 已提交
620 621

        # image = Image.fromarray(image)
D
dongshuilong 已提交
622
        mix = np.zeros(image.shape)
F
Felix 已提交
623 624 625
        for i in range(self.mixture_width):
            image_aug = image.copy()
            image_aug = Image.fromarray(image_aug)
D
dongshuilong 已提交
626 627
            depth = self.mixture_depth if self.mixture_depth > 0 else np.random.randint(
                1, 4)
F
Felix 已提交
628 629 630 631 632 633 634
            for _ in range(depth):
                op = np.random.choice(self.augmentations)
                image_aug = op(image_aug, self.aug_severity)
            mix += ws[i] * np.asarray(image_aug)

        mixed = (1 - m) * image + m * mix
        return mixed.astype(np.uint8)
G
gaotingquan 已提交
635 636 637 638 639 640


class ColorJitter(RawColorJitter):
    """ColorJitter.
    """

641
    def __init__(self, prob=2, *args, **kwargs):
G
gaotingquan 已提交
642
        super().__init__(*args, **kwargs)
643
        self.prob = prob
G
gaotingquan 已提交
644 645

    def __call__(self, img):
646 647 648 649 650 651 652
        if np.random.random() < self.prob:
            if not isinstance(img, Image.Image):
                img = np.ascontiguousarray(img)
                img = Image.fromarray(img)
            img = super()._apply_image(img)
            if isinstance(img, Image.Image):
                img = np.asarray(img)
G
gaotingquan 已提交
653
        return img
H
HydrogenSulfate 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671


class Pad(object):
    """
    Pads the given PIL.Image on all sides with specified padding mode and fill value.
    adapted from: https://pytorch.org/vision/stable/_modules/torchvision/transforms/transforms.html#Pad
    """

    def __init__(self, padding: int, fill: int=0,
                 padding_mode: str="constant"):
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

    def _parse_fill(self, fill, img, min_pil_version, name="fillcolor"):
        # Process fill color for affine transforms
        major_found, minor_found = (int(v)
                                    for v in PILLOW_VERSION.split('.')[:2])
D
dongshuilong 已提交
672 673
        major_required, minor_required = (int(v) for v in
                                          min_pil_version.split('.')[:2])
H
HydrogenSulfate 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        if major_found < major_required or (major_found == major_required and
                                            minor_found < minor_required):
            if fill is None:
                return {}
            else:
                msg = (
                    "The option to fill background area of the transformed image, "
                    "requires pillow>={}")
                raise RuntimeError(msg.format(min_pil_version))

        num_bands = len(img.getbands())
        if fill is None:
            fill = 0
        if isinstance(fill, (int, float)) and num_bands > 1:
            fill = tuple([fill] * num_bands)
        if isinstance(fill, (list, tuple)):
            if len(fill) != num_bands:
                msg = (
                    "The number of elements in 'fill' does not match the number of "
                    "bands of the image ({} != {})")
                raise ValueError(msg.format(len(fill), num_bands))

            fill = tuple(fill)

        return {name: fill}

    def __call__(self, img):
        opts = self._parse_fill(self.fill, img, "2.3.0", name="fill")
        if img.mode == "P":
            palette = img.getpalette()
            img = ImageOps.expand(img, border=self.padding, **opts)
            img.putpalette(palette)
            return img

        return ImageOps.expand(img, border=self.padding, **opts)