PULC_text_image_orientation_en.md 20.0 KB
Newer Older
G
gaotingquan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# PULC Classification Model of Text Image Orientation

## Catalogue

- [1. Introduction](#1)
- [2. Quick Start](#2)
    - [2.1 PaddlePaddle Installation](#2.1)
    - [2.2 PaddleClas Installation](#2.2)
    - [2.3 Prediction](#2.3)
- [3. Training, Evaluation and Inference](#3)
    - [3.1 Installation](#3.1)
    - [3.2 Dataset](#3.2)
      - [3.2.1 Dataset Introduction](#3.2.1)
      - [3.2.2 Getting Dataset](#3.2.2)
    - [3.3 Training](#3.3)
    - [3.4 Evaluation](#3.4)
    - [3.5 Inference](#3.5)
- [4. Model Compression](#4)
  - [4.1 SKL-UGI Knowledge Distillation](#4.1)
    - [4.1.1 Teacher Model Training](#4.1.1)
    - [4.1.2 Knowledge Distillation Training](#4.1.2)
- [5. SHAS](#5)
- [6. Inference Deployment](#6)
  - [6.1 Getting Paddle Inference Model](#6.1)
    - [6.1.1 Exporting Paddle Inference Model](#6.1.1)
    - [6.1.2 Downloading Inference Model](#6.1.2)
  - [6.2 Prediction with Python](#6.2)
    - [6.2.1 Image Prediction](#6.2.1)
    - [6.2.2 Images Prediction](#6.2.2)
  - [6.3 Deployment with C++](#6.3)
  - [6.4 Deployment as Service](#6.4)
  - [6.5 Deployment on Mobile](#6.5)
  - [6.6 Converting To ONNX and Deployment](#6.6)

<a name="1"></a>

## 1. Introduction

In the process of document scanning, license shooting and so on, sometimes in order to shoot more clearly, the camera device will be rotated, resulting in photo in different directions. At this time, the standard OCR process cannot cope with these issues well. Using the text image orientation classification technology, the direction of the text image can be predicted and adjusted, so as to improve the accuracy of OCR processing. This case provides a way for users to use PaddleClas PULC (Practical Ultra Lightweight Classification) to quickly build a lightweight, high-precision, practical classification model of text image orientation. This model can be widely used in OCR processing scenarios of rotating pictures in financial, government and other industries.

G
gaotingquan 已提交
41
The following table lists the relevant indicators of the model. The first two lines means that using SwinTransformer_tiny and MobileNetV3_small_x0_35 as the backbone to training. The third to fifth lines means that the backbone is replaced by PPLCNet, additional use of SSLD pretrained model and additional use of hyperparameters searching strategy.
G
gaotingquan 已提交
42

G
gaotingquan 已提交
43
| Backbone | Top1-Acc(%) | Latency(ms) | Size(M)| Training Strategy |
G
gaotingquan 已提交
44
| ----------------------- | --------- | ---------- | --------- | ------------------------------------- |
G
gaotingquan 已提交
45 46 47 48 49
| SwinTranformer_tiny     | 99.12     | 89.65      | 107       | using ImageNet pretrained model       |
| MobileNetV3_small_x0_35 | 83.61     | 2.95       | 17        | using ImageNet pretrained model       |
| PPLCNet_x1_0            | 97.85     | 2.16       | 6.5       | using ImageNet pretrained model       |
| PPLCNet_x1_0            | 98.02     | 2.16       | 6.5       | using SSLD pretrained model           |
| **PPLCNet_x1_0**        | **99.06** | **2.16**   | **6.5**   | using SSLD pretrained model + hyperparameters searching strategy |
G
gaotingquan 已提交
50

G
gaotingquan 已提交
51
It can be seen that high accuracy can be getted when backbone is SwinTranformer_tiny, but the speed is slow. Replacing backbone with the lightweight model MobileNetV3_small_x0_35, the speed can be greatly improved, but the accuracy will be greatly reduced. Replacing backbone with faster backbone PPLCNet_x1_0, the accuracy is higher more 14 percentage points than MobileNetv3_small_x0_35. At the same time, the speed can be more faster. After additional using the SSLD pretrained model, the accuracy can be improved by about 0.17 percentage points without affecting the inference speed. Finally, after additional using the hyperparameters searching strategy, the accuracy can be further improved by 1.04 percentage points. At this point, the accuracy is close to that of SwinTranformer_tiny, but the speed is more faster. The training method and deployment instructions of PULC will be introduced in detail below.
G
gaotingquan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

**Note**:

* The Latency is tested on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz. The MKLDNN is enabled and the number of threads is 10.
* About PP-LCNet, please refer to [PP-LCNet Introduction](../models/PP-LCNet_en.md) and [PP-LCNet Paper](https://arxiv.org/abs/2109.15099).

<a name="2"></a>

## 2. Quick Start

<a name="2.1"></a>  

### 2.1 PaddlePaddle Installation

- Run the following command to install if CUDA9 or CUDA10 is available.

```bash
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple
```

- Run the following command to install if GPU device is unavailable.

```bash
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```

Please refer to [PaddlePaddle Installation](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/en/install/pip/linux-pip_en.html) for more information about installation, for examples other versions.

<a name="2.2"></a>  

### 2.2 PaddleClas wheel Installation

The command of PaddleClas installation as bellow:

```bash
pip3 install paddleclas
```

<a name="2.3"></a>

### 2.3 Prediction

First, please click [here](https://paddleclas.bj.bcebos.com/data/PULC/pulc_demo_imgs.zip) to download and unzip to get the test demo images.

* Prediction with CLI

```bash
paddleclas --model_name=text_image_orientation --infer_imgs=pulc_demo_imgs/text_image_orientation/img_rot0_demo.jpg
```

Results:

```
>>> result
class_ids: [0, 2], scores: [0.85615, 0.05046], label_names: ['0', '180'], filename: pulc_demo_imgs/text_image_orientation/img_rot0_demo.jpg
Predict complete!
```

**Note**: If you want to test other images, only need to specify the `--infer_imgs` argument, and the directory containing images is also supported.

* Prediction in Python

```python
import paddleclas
model = paddleclas.PaddleClas(model_name="text_image_orientation")
result = model.predict(input_data="pulc_demo_imgs/text_image_orientation/img_rot0_demo.jpg")
print(next(result))
```

**Note**: The `result` returned by `model.predict()` is a generator, so you need to use the `next()` function to call it or `for` loop to loop it. And it will predict with `batch_size` size batch and return the prediction results when called. The default `batch_size` is 1, and you also specify the `batch_size` when instantiating, such as `model = paddleclas.PaddleClas(model_name="text_image_orientation",  batch_size=2)`. The result of demo above:

```
>>> result
[{'class_ids': [0, 2], 'scores': [0.85615, 0.05046], 'label_names': ['0', '180'], 'filename': 'pulc_demo_imgs/text_image_orientation/img_rot0_demo.jpg'}]
```

<a name="3"></a>

## 3. Training, Evaluation and Inference

<a name="3.1"></a>  

### 3.1 Installation

Please refer to [Installation](../installation/install_paddleclas_en.md) to get the description about installation.

<a name="3.2"></a>

### 3.2 Dataset

<a name="3.2.1"></a>

#### 3.2.1 Dataset Introduction

The model provided in [1 section](#1) is trained using internal data, which has not been open source. So we provide a dataset with [ICDAR2019-ArT](https://ai.baidu.com/broad/introduction?dataset=art), [XFUND](https://github.com/doc-analysis/XFUND) and [ICDAR2015](https://rrc.cvc.uab.es/?ch=4&com=introduction) to experience.

![](../../images/PULC/docs/text_image_orientation_original_data.png)

<a name="3.2.2"></a>  

#### 3.2.2 Getting Dataset

The data used in this case can be getted by processing the open source data. The detailed processes are as follows:

Considering the resolution of original image is too high to need long training time, all the data are scaled in advance. Keeping image aspect ratio, the short edge is scaled to 384. Then rotate the data clockwise to generate composite data of 90 degrees, 180 degrees and 270 degrees respectively. Among them, 41460 images generated by ICDAR2019-ArT and XFUND are randomly divided into training set and verification set according to the ratio of 9:1. 6000 images generated by ICDAR2015 are used as supplementary data in the experiment of `SKL-UGI knowledge distillation`.

Some image of the processed dataset is as follows:

![](../../images/PULC/docs/text_image_orientation_data_demo.png)

And you can also download the data processed directly.

```
cd path_to_PaddleClas
```

Enter the `dataset/` directory, download and unzip the dataset.

```shell
cd dataset
wget https://paddleclas.bj.bcebos.com/data/PULC/text_image_orientation.tar
tar -xf text_image_orientation.tar
cd ../
```

The datas under `text_image_orientation` directory:

```
├── img_0
│   ├── img_rot0_0.jpg
│   ├── img_rot0_1.png
...
├── img_90
│   ├── img_rot90_0.jpg
│   ├── img_rot90_1.png
...
├── img_180
│   ├── img_rot180_0.jpg
│   ├── img_rot180_1.png
...
├── img_270
│   ├── img_rot270_0.jpg
│   ├── img_rot270_1.png
...
├── distill_data
│   ├── gt_7060_0.jpg
│   ├── gt_7060_90.jpg
...
├── train_list.txt
├── train_list.txt.debug
├── train_list_for_distill.txt
├── test_list.txt
├── test_list.txt.debug
└── label_list.txt
```

Where `img_0/`, `img_90/`, `img_180/` and `img_270/` are data of 4 angles respectively. The `train_list.txt` and `val_list.txt` are label files of training data and validation data respectively. The file `train_list.txt.debug` and `val_list.txt.debug` are subset of `train_list.txt` and `val_list.txt` respectively. `distill_data/` is the supplementary data, which will be used for SKL-UGI knowledge distillation, and its label file is `train_list_for_distill.txt`.

**Note**:

* About the contents format of `train_list.txt` and `val_list.txt`, please refer to [Description about Classification Dataset in PaddleClas](../data_preparation/classification_dataset_en.md).
* About the `train_list_for_distill.txt`, please refer to [Knowledge Distillation Label](../advanced_tutorials/distillation/distillation_en.md).

<a name="3.3"></a>

### 3.3 Training

The details of training config in `ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml`. The command about training as follows:

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml
```

The best metric of validation data is about `0.99`.


**Note**:
* The metric mentioned in this document are training on large-scale internal dataset. When using demo data to train, this metric cannot be achieved because the dataset is small and the distribution is different from large-scale internal data. You can further expand your own data and use the optimization method described in this case to achieve higher accuracy.

<a name="3.4"></a>

### 3.4 Evaluation

After training, you can use the following commands to evaluate the model.

```bash
python3 tools/eval.py \
    -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```

Among the above command, the argument `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` specify the path of the best model weight file. You can specify other path if needed.

<a name="3.5"></a>

### 3.5 Inference

After training, you can use the model that trained to infer. Command is as follow:

```bash
python3 tools/infer.py \
    -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```

The results:

```
[{'class_ids': [0, 2], 'scores': [0.85615, 0.05046], 'file_name': 'deploy/images/PULC/text_image_orientation/img_rot0_demo.jpg', 'label_names': ['0', '180']}]
```

**Note**:

* Among the above command, argument `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` specify the path of the best model weight file. You can specify other path if needed.
* The default test image is `deploy/images/PULC/text_image_orientation/img_rot0_demo.jpg`. And you can test other image, only need to specify the argument `-o Infer.infer_imgs=path_to_test_image`.
* The Top2 result would be printed. `0` means that the text direction of the drawing is 0 degrees, `90` means that 90 degrees clockwise, `180` means that 180 degrees clockwise, `270` means that 270 degrees clockwise.

<a name="4"></a>

## 4. Model Compression

<a name="4.1"></a>

### 4.1 SKL-UGI Knowledge Distillation

SKL-UGI is a simple but effective knowledge distillation algrithem proposed by PaddleClas.

<!-- todo -->
<!-- Please refer to [SKL-UGI](../advanced_tutorials/distillation/distillation_en.md) for more details. -->

<a name="4.1.1"></a>

#### 4.1.1 Teacher Model Training

Training the teacher model with hyperparameters specified in `ppcls/configs/PULC/text_image_orientation/PPLCNet/PPLCNet_x1_0.yaml`. The command is as follow:

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml \
        -o Arch.name=ResNet101_vd
```

The best metric of validation data is about `0.996`. The best teacher model weight would be saved in file `output/ResNet101_vd/best_model.pdparams`.

**Note**: Training ResNet101_vd need more GPU memory. So you can reduce `batch_size` and `learning rate` at the same time, such as: `-o DataLoader.Train.sampler.batch_size=64`, `Optimizer.lr.learning_rate=0.1`.

<a name="4.1.2"></a>

#### 4.1.2 Knowledge Distillation Training

G
gaotingquan 已提交
309
The training strategy, specified in training config file `ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0_distillation.yaml`, the teacher model is `ResNet101_vd` and the student model is `PPLCNet_x1_0`.
G
gaotingquan 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

The command is as follow:

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0_distillation.yaml \
        -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```

The best metric is about `0.99`. The best student model weight would be saved in file `output/DistillationModel/best_model_student.pdparams`.

<a name="5"></a>

## 5. Hyperparameters Searching

The hyperparameters used by [3.2 section](#3.2) and [4.1 section](#4.1) are according by `Hyperparameters Searching` in PaddleClas. If you want to get better results on your own dataset, you can refer to [Hyperparameters Searching](PULC_train_en.md#4) to get better hyperparameters.

**Note**: This section is optional. Because the search process will take a long time, you can selectively run according to your specific. If not replace the dataset, you can ignore this section.

<a name="6"></a>

## 6. Inference Deployment

<a name="6.1"></a>

### 6.1 Getting Paddle Inference Model

Paddle Inference is the original Inference Library of the PaddlePaddle, provides high-performance inference for server deployment. And compared with  directly based on the pretrained model, Paddle Inference can use tools to accelerate prediction, so as to achieve better inference performance. Please refer to [Paddle Inference](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html) for more information.

Paddle Inference need Paddle Inference Model to predict. Two process provided to get Paddle Inference Model. If want to use the provided by PaddleClas, you can download directly, click [Downloading Inference Model](#6.1.2).

<a name="6.1.1"></a>

### 6.1.1 Exporting Paddle Inference Model

The command about exporting Paddle Inference Model is as follow:

```bash
python3 tools/export_model.py \
    -c ./ppcls/configs/PULC/text_image_orientation/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model=output/DistillationModel/best_model_student \
    -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_text_image_orientation_infer
```

After running above command, the inference model files would be saved in `deploy/models/PPLCNet_x1_0_text_image_orientation_infer`, as shown below:

```
├── PPLCNet_x1_0_text_image_orientation_infer
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

**Note**: The best model is from knowledge distillation training. If knowledge distillation training is not used, the best model would be saved in `output/PPLCNet_x1_0/best_model.pdparams`.

<a name="6.1.2"></a>

### 6.1.2 Downloading Inference Model

You can also download directly.

```
cd deploy/models
# download the inference model and decompression
wget https://paddleclas.bj.bcebos.com/models/PULC/text_image_orientation_infer.tar && tar -xf text_image_orientation_infer.tar
```

After decompression, the directory `models` should be shown below.

```
├── text_image_orientation_infer
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

<a name="6.2"></a>

### 6.2 Prediction with Python

<a name="6.2.1"></a>  

#### 6.2.1 Image Prediction

Return the directory `deploy`:

```
cd ../
```

Run the following command to classify text image orientation about image `./images/PULC/text_image_orientation/img_rot0_demo.png`.

```shell
# Use the following command to predict with GPU.
python3.7 python/predict_cls.py -c configs/PULC/text_image_orientation/inference_text_image_orientation.yaml
# Use the following command to predict with CPU.
python3.7 python/predict_cls.py -c configs/PULC/text_image_orientation/inference_text_image_orientation.yaml -o Global.use_gpu=False
```

The prediction results:

```
img_rot0_demo.jpg:    class id(s): [0, 2], score(s): [0.86, 0.05], label_name(s): ['0', '180']
```

Among the results, `0` means that the text direction of the drawing is 0 degrees, `90` means that 90 degrees clockwise, `180` means that 180 degrees clockwise, `270` means that 270 degrees clockwise.

<a name="6.2.2"></a>  

#### 6.2.2 Images Prediction

If you want to predict images in directory, please specify the argument `Global.infer_imgs` as directory path by `-o Global.infer_imgs`. The command is as follow.

```shell
# Use the following command to predict with GPU. If want to replace with CPU, you can add argument -o Global.use_gpu=False
python3.7 python/predict_cls.py -c configs/PULC/text_image_orientation/inference_text_image_orientation.yaml -o Global.infer_imgs="./images/PULC/text_image_orientation/"
```

All prediction results will be printed, as shown below.

```
img_rot0_demo.jpg:    class id(s): [0, 2], score(s): [0.86, 0.05], label_name(s): ['0', '180']
img_rot180_demo.jpg:    class id(s): [2, 1], score(s): [0.88, 0.04], label_name(s): ['180', '90']
```

<a name="6.3"></a>

### 6.3 Deployment with C++

PaddleClas provides an example about how to deploy with C++. Please refer to [Deployment with C++](../inference_deployment/cpp_deploy_en.md).

<a name="6.4"></a>

### 6.4 Deployment as Service

Paddle Serving is a flexible, high-performance carrier for machine learning models, and supports different protocol, such as RESTful, gRPC, bRPC and so on, which provides different deployment solutions for a variety of heterogeneous hardware and operating system environments. Please refer [Paddle Serving](https://github.com/PaddlePaddle/Serving) for more information.

PaddleClas provides an example about how to deploy as service by Paddle Serving. Please refer to [Paddle Serving Deployment](../inference_deployment/paddle_serving_deploy_en.md).

<a name="6.5"></a>

### 6.5 Deployment on Mobile

Paddle-Lite is an open source deep learning framework that designed to make easy to perform inference on mobile, embeded, and IoT devices. Please refer to [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite) for more information.

PaddleClas provides an example of how to deploy on mobile by Paddle-Lite. Please refer to [Paddle-Lite deployment](../inference_deployment/paddle_lite_deploy_en.md).

<a name="6.6"></a>

### 6.6 Converting To ONNX and Deployment

Paddle2ONNX support convert Paddle Inference model to ONNX model. And you can deploy with ONNX model on different inference engine, such as TensorRT, OpenVINO, MNN/TNN, NCNN and so on. About Paddle2ONNX details, please refer to [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX).

PaddleClas provides an example of how to convert Paddle Inference model to ONNX model by paddle2onnx toolkit and predict by ONNX model. You can refer to [paddle2onnx](../../../deploy/paddle2onnx/readme_en.md) for deployment details.