PULC_car_exists.md 20.0 KB
Newer Older
W
weishengyu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
# PULC 有人/无人分类模型

------


## 目录

- [1. 模型和应用场景介绍](#1)
- [2. 模型快速体验](#2)
    - [2.1 安装 paddleclas](#2.1)
    - [2.2 预测](#2.2)
- [3. 模型训练、评估和预测](#3)
    - [3.1 环境配置](#3.1)
    - [3.2 数据准备](#3.2)
      - [3.2.1 数据集来源](#3.2.1)
      - [3.2.2 数据集获取](#3.2.2)
    - [3.3 模型训练](#3.3)
    - [3.4 模型评估](#3.4)
    - [3.5 模型预测](#3.5)
- [4. 模型压缩](#4)
  - [4.1 SKL-UGI 知识蒸馏](#4.1)
    - [4.1.1 教师模型训练](#4.1.1)
    - [4.1.2 蒸馏训练](#4.1.2)
- [5. 超参搜索](#5)
- [6. 模型推理部署](#6)
  - [6.1 推理模型准备](#6.1)
    - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
    - [6.1.2 直接下载 inference 模型](#6.1.2)
  - [6.2 基于 Python 预测引擎推理](#6.2)
    - [6.2.1 预测单张图像](#6.2.1)
    - [6.2.2 基于文件夹的批量预测](#6.2.2)
  - [6.3 基于 C++ 预测引擎推理](#6.3)
  - [6.4 服务化部署](#6.4)
  - [6.5 端侧部署](#6.5)
  - [6.6 Paddle2ONNX 模型转换与预测](#6.6)


<a name="1"></a>

## 1. 模型和应用场景介绍

该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的有人/无人的分类模型。该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。

W
weishengyu 已提交
44
下表列出了判断图片中是否有车的二分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_small_x0_35 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
W
weishengyu 已提交
45 46


W
weishengyu 已提交
47 48 49 50
| 模型 | Tpr(%)@Fpr0.01 | 延时(ms) | 存储(M) | 策略 |
|-------|----------------|----------|---------------|---------------|
| SwinTranformer_tiny  | 97.71          | 95.30  | 107 | 使用 ImageNet 预训练模型 |
| MobileNetV3_small_x0_35  | 81.23          | 2.85  | 1.6 | 使用 ImageNet 预训练模型 |
W
dbg  
weishengyu 已提交
51
| PPLCNet_x1_0  | 94.72          | 2.12  | 6.5 | 使用 ImageNet 预训练模型 |
W
weishengyu 已提交
52 53
| PPLCNet_x1_0  | 95.48          | 2.12  | 6.5 | 使用 SSLD 预训练模型 |
| PPLCNet_x1_0  | 95.48          | 2.12  | 6.5 | 使用 SSLD 预训练模型+EDA 策略|
W
dbg  
weishengyu 已提交
54
| <b>PPLCNet_x1_0<b>  | <b>95.92<b>    | <b>2.12<b>  | <b>6.5<b> | 使用 SSLD 预训练模型+EDA 策略+SKL-UGI 知识蒸馏策略|
littletomatodonkey's avatar
littletomatodonkey 已提交
55

W
dbg  
weishengyu 已提交
56
从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backboone 替换为轻量级模型 MobileNetV3_small_x0_35 后,速度可以大幅提升,但是会导致精度大幅下降。将 backbone 替换为速度更快的 PPLCNet_x1_0 时,精度较 MobileNetV3_small_x0_35 高 13 个百分点,与此同时速度依旧可以快 20% 以上。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.7 个百分点,进一步地,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.44 个百分点。此时,PPLCNet_x1_0 达到了接近 SwinTranformer_tiny 模型的精度,但是速度快 40 多倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
littletomatodonkey's avatar
littletomatodonkey 已提交
57 58 59

**备注:**

W
weishengyu 已提交
60 61 62 63 64 65 66
* `Tpr`指标的介绍可以参考 [3.2 小节](#3.2)的备注部分,延时是基于 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz 测试得到,开启 MKLDNN 加速策略,线程数为10。
* 关于 PPLCNet 的介绍可以参考 [PPLCNet 介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)


<a name="2"></a>

## 2. 模型快速体验
littletomatodonkey's avatar
littletomatodonkey 已提交
67 68

<a name="2.1"></a>  
W
weishengyu 已提交
69 70 71 72 73

### 2.1 安装 paddleclas

使用如下命令快速安装 paddlepaddle, paddleclas

littletomatodonkey's avatar
littletomatodonkey 已提交
74
```  
W
weishengyu 已提交
75 76
pip3 install paddlepaddle paddleclas
```
littletomatodonkey's avatar
littletomatodonkey 已提交
77
<a name="2.2"></a>
W
weishengyu 已提交
78 79 80 81 82 83

### 2.2 预测

* 使用命令行快速预测

```bash
W
weishengyu 已提交
84
paddleclas --model_name=car_exists --infer_imgs=deploy/images/PULC/car_exists/objects365_00001507.jpeg
W
weishengyu 已提交
85 86 87 88 89
```

结果如下:
```
>>> result
W
dbg  
weishengyu 已提交
90
class_ids: [1], scores: [0.9871138], label_names: ['contains_vehicle'], filename: deploy/images/PULC/car_exists/objects365_00001507.jpeg
W
weishengyu 已提交
91 92 93 94 95 96 97 98 99 100
Predict complete!
```

**备注**: 更换其他预测的数据时,只需要改变 `--infer_imgs=xx` 中的字段即可,支持传入整个文件夹。


* 在 Python 代码中预测
```python
import paddleclas
model = paddleclas.PaddleClas(model_name="car_exists")
W
weishengyu 已提交
101
result = model.predict(input_data="deploy/images/PULC/car_exists/objects365_00001507.jpeg")
W
weishengyu 已提交
102 103 104
print(next(result))
```

W
dbg  
weishengyu 已提交
105
**备注**`model.predict()` 为可迭代对象(`generator`),因此需要使用 `next()` 函数或 `for` 循环对其迭代调用。每次调用将以 `batch_size` 为单位进行一次预测,并返回预测结果, 默认 `batch_size` 为 1,如果需要更改 `batch_size`,实例化模型时,需要指定 `batch_size`,如 `model = paddleclas.PaddleClas(model_name="car_exists",  batch_size=2)`, 使用默认的代码返回结果示例如下:
W
weishengyu 已提交
106 107 108

```
>>> result
W
dbg  
weishengyu 已提交
109
[{'class_ids': [1], 'scores': [0.9871138], 'label_names': ['contains_vehicle'], 'filename': 'deploy/images/PULC/car_exists/objects365_00001507.jpeg'}]
W
weishengyu 已提交
110 111
```

littletomatodonkey's avatar
littletomatodonkey 已提交
112
<a name="3"></a>
W
weishengyu 已提交
113 114

## 3. 模型训练、评估和预测
littletomatodonkey's avatar
littletomatodonkey 已提交
115

W
weishengyu 已提交
116 117 118 119 120 121
<a name="3.1"></a>  

### 3.1 环境配置

* 安装:请先参考文档[环境准备](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。

littletomatodonkey's avatar
littletomatodonkey 已提交
122
<a name="3.2"></a>
W
weishengyu 已提交
123 124 125

### 3.2 数据准备

littletomatodonkey's avatar
littletomatodonkey 已提交
126
<a name="3.2.1"></a>
W
weishengyu 已提交
127 128 129 130 131

#### 3.2.1 数据集来源

本案例中所使用的所有数据集均为开源数据,`train``val` 集合均为[Objects365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`[ImageNet-1k 数据](https://www.image-net.org/)的验证集。

littletomatodonkey's avatar
littletomatodonkey 已提交
132
<a name="3.2.2"></a>  
W
weishengyu 已提交
133 134 135 136 137

#### 3.2.2 数据集获取

在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:

W
weishengyu 已提交
138
- 训练集合,本案例处理了 Objects365 数据训练集的标注文件,如果某张图含有“car”的标签,且这个框的面积在整张图中的比例大于 10%,即认为该张图中含有车,如果某张图中没有任何与交通工具,例如car、bus等相关的的标签,则认为该张图中不含有车。经过处理后,得到 108629 条可用数据,其中有车的数据有 27422 条,无车的数据 81207 条。
W
weishengyu 已提交
139

W
weishengyu 已提交
140 141 142
- 验证集合,处理方法与训练集相同,数据来源与 Objects365 数据集的验证集。为了测试结果准确,验证集经过人工校正,去除了一些可能存在标注错误的图像。

* 注:由于objects365的标签并不是完全互斥的,例如F1赛车可能是 "F1 Formula",也可能被标称"car"。为了减轻干扰,我们仅保留"car"标签作为有车,而将不含任何交通工具的图作为无车。
W
weishengyu 已提交
143 144 145

处理后的数据集部分数据可视化如下:

W
weishengyu 已提交
146
![](../../images/PULC/docs/car_exists_data_demo.jpeg)
W
weishengyu 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160

此处提供了经过上述方法处理好的数据,可以直接下载得到。


进入 PaddleClas 目录。

```
cd path_to_PaddleClas
```

进入 `dataset/` 目录,下载并解压有车/无车场景的数据。

```shell
cd dataset
W
weishengyu 已提交
161 162
wget https://paddleclas.bj.bcebos.com/data/PULC/car_exists.tar
tar -xf car_exists.tar
W
weishengyu 已提交
163 164 165
cd ../
```

W
weishengyu 已提交
166
执行上述命令后,`dataset/` 下存在 `car_exists` 目录,该目录中具有以下数据:
W
weishengyu 已提交
167 168 169

```

W
weishengyu 已提交
170 171 172
├── objects365_car
│   ├── objects365_00000039.jpg
│   ├── objects365_00000099.jpg
W
weishengyu 已提交
173 174 175 176 177 178 179 180 181 182 183 184
├── ImageNet_val
│   ├── ILSVRC2012_val_00000001.JPEG
│   ├── ILSVRC2012_val_00000002.JPEG
...
├── train_list.txt
├── train_list.txt.debug
├── train_list_for_distill.txt
├── val_list.txt
└── val_list.txt.debug
```

其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt`
littletomatodonkey's avatar
littletomatodonkey 已提交
185 186

**备注:**
W
weishengyu 已提交
187 188

* 关于 `train_list.txt``val_list.txt`的格式说明,可以参考 [PaddleClas 分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明)
littletomatodonkey's avatar
littletomatodonkey 已提交
189 190

* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](../advanced_tutorials/ssld.md#3.2)
W
weishengyu 已提交
191 192


littletomatodonkey's avatar
littletomatodonkey 已提交
193
<a name="3.3"></a>
W
weishengyu 已提交
194

littletomatodonkey's avatar
littletomatodonkey 已提交
195
### 3.3 模型训练
W
weishengyu 已提交
196 197 198 199 200 201 202 203 204


`ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
littletomatodonkey's avatar
littletomatodonkey 已提交
205
        -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml
W
weishengyu 已提交
206 207
```

W
weishengyu 已提交
208
验证集的最佳指标在 `0.95-0.96` 之间(数据集较小,容易造成波动)。
W
weishengyu 已提交
209

littletomatodonkey's avatar
littletomatodonkey 已提交
210
**备注:**
W
weishengyu 已提交
211

W
weishengyu 已提交
212
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为 1/100 。关于 Fpr 和 Tpr 的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)
W
weishengyu 已提交
213 214 215 216 217 218 219 220 221 222 223

* 在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的 `Fpr``Tpr` 值,以及当前的 `threshold`值,`Tpr` 值反映了在当前 `Fpr` 值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳 `Fpr` 所对应的分类阈值,可用于后续模型部署落地等。

<a name="3.4"></a>

### 3.4 模型评估

训练好模型之后,可以通过以下命令实现对模型指标的评估。

```bash
python3 tools/eval.py \
W
weishengyu 已提交
224
    -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml \
W
weishengyu 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
    -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
```

其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。

<a name="3.5"></a>

### 3.5 模型预测

模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:

```python
python3 tools/infer.py \
W
weishengyu 已提交
238
    -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml \
W
dbg  
weishengyu 已提交
239
    -o Global.pretrained_model=output/PPLCNet_x1_0/best_model
W
weishengyu 已提交
240 241 242 243 244
```

输出结果如下:

```
W
dbg  
weishengyu 已提交
245
[{'class_ids': [1], 'scores': [0.9871138], 'label_names': ['contains_vehicle'], 'filename': 'deploy/images/PULC/car_exists/objects365_00001507.jpeg'}]
W
weishengyu 已提交
246 247
```

littletomatodonkey's avatar
littletomatodonkey 已提交
248
**备注:**
W
weishengyu 已提交
249 250

* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
littletomatodonkey's avatar
littletomatodonkey 已提交
251

W
weishengyu 已提交
252
* 默认是对 `deploy/images/PULC/car_exists/objects365_00001507.jpeg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
littletomatodonkey's avatar
littletomatodonkey 已提交
253

W
weishengyu 已提交
254 255 256 257 258 259 260 261 262 263 264
* 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如`-o Infer.PostProcess.threshold=0.9794`,该值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。


<a name="4"></a>

## 4. 模型压缩

<a name="4.1"></a>

### 4.1 SKL-UGI 知识蒸馏

littletomatodonkey's avatar
littletomatodonkey 已提交
265 266 267
SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](../advanced_tutorials/ssld.md)

<a name="4.1.1"></a>
W
weishengyu 已提交
268 269 270

#### 4.1.1 教师模型训练

W
dbg  
weishengyu 已提交
271
复用 `ppcls/configs/PULC/car_exists/PPLCNet/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
W
weishengyu 已提交
272 273 274 275 276 277

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
W
dbg  
weishengyu 已提交
278
        -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml \
W
weishengyu 已提交
279 280 281 282 283
        -o Arch.name=ResNet101_vd
```

验证集的最佳指标为 `0.96-0.98` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`

littletomatodonkey's avatar
littletomatodonkey 已提交
284
<a name="4.1.2"></a>
W
weishengyu 已提交
285 286 287

####  4.1.2 蒸馏训练

W
dbg  
weishengyu 已提交
288
配置文件`ppcls/configs/PULC/car_exists/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
W
weishengyu 已提交
289 290 291 292 293 294

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
W
weishengyu 已提交
295
        -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0_distillation.yaml \
W
weishengyu 已提交
296 297 298 299 300 301
        -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```

验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`


littletomatodonkey's avatar
littletomatodonkey 已提交
302
<a name="5"></a>
W
weishengyu 已提交
303 304 305 306 307 308 309 310 311 312 313

## 5. 超参搜索

[3.2 节](#3.2)[4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。

**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。

<a name="6"></a>

## 6. 模型推理部署

littletomatodonkey's avatar
littletomatodonkey 已提交
314
<a name="6.1"></a>
W
weishengyu 已提交
315 316 317 318

### 6.1 推理模型准备

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于 Paddle Inference 推理引擎的介绍,可以参考 [Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)
littletomatodonkey's avatar
littletomatodonkey 已提交
319

W
weishengyu 已提交
320 321
当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。

littletomatodonkey's avatar
littletomatodonkey 已提交
322
<a name="6.1.1"></a>
W
weishengyu 已提交
323 324 325 326 327 328 329

### 6.1.1 基于训练得到的权重导出 inference 模型

此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:

```bash
python3 tools/export_model.py \
W
weishengyu 已提交
330
    -c ./ppcls/configs/PULC/car_exists/PPLCNet_x1_0.yaml \
W
weishengyu 已提交
331
    -o Global.pretrained_model=output/DistillationModel/best_model_student \
W
weishengyu 已提交
332
    -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_car_exists_infer
W
weishengyu 已提交
333
```
W
weishengyu 已提交
334
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_car_exists_infer` 文件夹,`models` 文件夹下应有如下文件结构:
W
weishengyu 已提交
335 336

```
W
weishengyu 已提交
337
├── PPLCNet_x1_0_car_exists_infer
W
weishengyu 已提交
338 339 340 341 342 343 344
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。

littletomatodonkey's avatar
littletomatodonkey 已提交
345
<a name="6.1.2"></a>
W
weishengyu 已提交
346 347 348 349 350 351 352 353

### 6.1.2 直接下载 inference 模型

[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。

```
cd deploy/models
# 下载 inference 模型并解压
W
weishengyu 已提交
354
wget https://paddleclas.bj.bcebos.com/models/PULC/car_exists_infer.tar && tar -xf car_exists_infer.tar
W
weishengyu 已提交
355 356 357 358 359
```

解压完毕后,`models` 文件夹下应有如下文件结构:

```
W
weishengyu 已提交
360
├── car_exists_infer
W
weishengyu 已提交
361 362 363 364 365
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

littletomatodonkey's avatar
littletomatodonkey 已提交
366
<a name="6.2"></a>
W
weishengyu 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380

### 6.2 基于 Python 预测引擎推理


<a name="6.2.1"></a>  

#### 6.2.1 预测单张图像

返回 `deploy` 目录:

```
cd ../
```

W
weishengyu 已提交
381
运行下面的命令,对图像 `./images/PULC/car_exists/objects365_00001507.jpeg` 进行有人/无人分类。
W
weishengyu 已提交
382 383 384

```shell
# 使用下面的命令使用 GPU 进行预测
W
weishengyu 已提交
385
python3.7 python/predict_cls.py -c configs/PULC/car_exists/inference_car_exists.yaml
W
weishengyu 已提交
386
# 使用下面的命令使用 CPU 进行预测
W
weishengyu 已提交
387
python3.7 python/predict_cls.py -c configs/PULC/car_exists/inference_car_exists.yaml -o Global.use_gpu=False
W
weishengyu 已提交
388 389 390 391 392
```

输出结果如下。

```
W
dbg  
weishengyu 已提交
393
objects365_00001507.jpeg:       class id(s): [1], score(s): [0.99], label_name(s): ['contains_car']
W
weishengyu 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
```


**备注:** 二分类默认的阈值为0.5, 如果需要指定阈值,可以重写 `Infer.PostProcess.threshold` ,如`-o Infer.PostProcess.threshold=0.9794`,该值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。该阈值的确定方法可以参考[3.3节](#3.3)备注部分。

<a name="6.2.2"></a>  

#### 6.2.2 基于文件夹的批量预测

如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。

```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
W
weishengyu 已提交
407
python3.7 python/predict_cls.py -c configs/PULC/car_exists/inference_car_exists.yaml -o Global.infer_imgs="./images/PULC/car_exists/"
W
weishengyu 已提交
408 409 410 411 412
```

终端中会输出该文件夹内所有图像的分类结果,如下所示。

```
W
dbg  
weishengyu 已提交
413 414
objects365_00001507.jpeg:       class id(s): [1], score(s): [0.99], label_name(s): ['contains_car']
objects365_00001521.jpeg:       class id(s): [0], score(s): [0.99], label_name(s): ['nocar']
W
weishengyu 已提交
415 416
```

W
weishengyu 已提交
417
其中,`contains_car` 表示该图里存在车,`nocar` 表示该图里不存在车。
W
weishengyu 已提交
418

littletomatodonkey's avatar
littletomatodonkey 已提交
419
<a name="6.3"></a>
W
weishengyu 已提交
420 421 422 423 424

### 6.3 基于 C++ 预测引擎推理

PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。

littletomatodonkey's avatar
littletomatodonkey 已提交
425
<a name="6.4"></a>
W
weishengyu 已提交
426 427 428 429

### 6.4 服务化部署

Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)
littletomatodonkey's avatar
littletomatodonkey 已提交
430

W
weishengyu 已提交
431 432
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。

littletomatodonkey's avatar
littletomatodonkey 已提交
433
<a name="6.5"></a>
W
weishengyu 已提交
434 435 436 437

### 6.5 端侧部署

Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)
littletomatodonkey's avatar
littletomatodonkey 已提交
438

W
weishengyu 已提交
439 440
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。

littletomatodonkey's avatar
littletomatodonkey 已提交
441
<a name="6.6"></a>
W
weishengyu 已提交
442 443

### 6.6 Paddle2ONNX 模型转换与预测
littletomatodonkey's avatar
littletomatodonkey 已提交
444

W
weishengyu 已提交
445 446 447
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)

PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。