PULC_person_exists.md 15.5 KB
Newer Older
1
# PULC 有人/无人分类模型
C
cuicheng01 已提交
2

C
cuicheng01 已提交
3
此处提供了用户使用 PaddleClas 的 超轻量图像分类方案(PULC, Practical Ultra Lightweight Classification) 快速构建轻量级、高精度、可落地的有人/无人的分类模型教程,主要基于有人/无人场景的数据,融合了轻量级骨干网络 PPLCNet、SSLD 预训练权重、EDA 数据增强策略、SKL-UGI 知识蒸馏策略、SHAS 超参数搜索策略,得到精度高、速度快、易于部署的二分类模型。
C
cuicheng01 已提交
4 5 6 7

------


C
cuicheng01 已提交
8
## 目录
C
cuicheng01 已提交
9

10 11 12 13 14 15 16 17 18 19
- [1. 应用场景介绍](#1)
- [2. 模型快速体验](#2)
  - [2.1 PULC 有人/无人分类模型介绍](#2.1)
  - [2.2 环境配置](#2.2)  
  - [2.3 模型推理预测](#2.3)
      - [2.3.1 下载模型](#2.3.1)
      - [2.3.2 模型推理预测](#2.3.2)
        - [2.3.2.1 预测单张图像](#2.3.2.1)
        - [2.3.2.2 基于文件夹的批量预测](#2.3.2.2)
- [3.PULC 有人/无人分类模型训练](#3)
C
cuicheng01 已提交
20
    - [3.1 数据准备](#3.1)
21 22
      - [3.1.1 数据集来源](#3.1.1)
      - [3.1.2 数据集获取](#3.1.2)
C
cuicheng01 已提交
23
    - [3.2 模型训练](#3.2)
24 25 26
      - [3.2.1 基于默认超参数训练轻量级模型](#3.2.1)
      - [3.2.2 基于默认超参数训练教师模型](#3.2.2)
      - [3.2.3 基于默认超参数进行蒸馏训练](#3.2.3) 
C
cuicheng01 已提交
27 28 29
- [4. 模型评估与推理部署](#4)
  - [4.1 模型评估](#4.1)
  - [4.2 模型预测](#4.2)
C
cuicheng01 已提交
30 31
  - [4.3 使用 inference 模型进行推理](#4.3)
    - [4.3.1 导出 inference 模型](#4.3.1)
C
cuicheng01 已提交
32 33 34 35
    - [4.3.2 基于 inference 模型 python 推理预测](#4.3.2)
    - [4.3.3 基于 inference 模型 C++ 推理预测](#4.3.3)
  - [4.4 基于 Paddle Serving 完成模型服务化部署](#4.4)
  - [4.5 基于 Paddle Lite 完成模型端侧部署](#4.5)
C
cuicheng01 已提交
36
    
C
cuicheng01 已提交
37

C
cuicheng01 已提交
38 39
<a name="1"></a>

40
## 1. 应用场景介绍
C
cuicheng01 已提交
41

42 43 44 45 46 47 48
该案例提供了可以产出超轻量级二分类模型的方法。使用该方法训练得到的模型可以快速判断图片中是否有人,该模型可以广泛应用于如监控场景、人员进出管控场景、海量数据过滤场景等。

<a name="2"></a>

## 2. 模型快速体验

<a name="2.1"></a>
C
cuicheng01 已提交
49

50
### 2.1 PULC 有人/无人分类模型介绍
C
cuicheng01 已提交
51

52 53 54 55 56 57 58 59 60 61 62
下表列出了判断图片中是否有人的二分类模型的相关指标,其中,最后一行是根据 PULC 策略训练得到的模型,该模型与其他较大的模型相比,相同推理速度下拥有更高的精度,相同推理速度下拥有更高的精度。比如,与 SwinTransformer-tiny 相比,PULC 得到的模型相同在精度下,速度快 70+ 倍。训练方法和推理部署方法将在下面详细介绍。

| 模型 | 精度(%) | 延时(ms) | 存储(M) | 策略 |
|-------|-----------|----------|---------------|---------------|
| SwinTranformer_tiny  | <b>95.69<b> | 175.52  | 107 | 使用ImageNet预训练模型 |
| MobileNetV3_large_x1_0  | <b>91.97<b> | 4.70  | 17 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0  | <b>89.57<b> | 2.36  | 6.5 | 使用ImageNet预训练模型 |
| PPLCNet_x1_0  | <b>92.10<b> | 2.36  | 6.5 | 使用SSLD预训练模型 |
| PPLCNet_x1_0  | <b>93.43<b> | 2.36  | 6.5 | 使用SSLD预训练模型+EDA策略|
| <b>PPLCNet_x1_0<b>  | <b>95.60<b> | 2.36  | 6.5 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|

C
cuicheng01 已提交
63 64
**备注:** 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)

65 66 67 68 69 70 71
<a name="2.2"></a>  

### 2.2 环境配置

* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
 
<a name="2.3"></a>       
C
cuicheng01 已提交
72

73 74 75 76 77
### 2.3 模型推理预测
 
<a name="2.3.1"></a>  
    
#### 2.3.1 下载模型
C
cuicheng01 已提交
78 79 80 81 82 83 84

* 进入 `deploy` 运行目录。

```
cd deploy
```

85
下载有人/无人分类的推理模型。
C
cuicheng01 已提交
86 87 88 89

```
mkdir models
cd models
90 91
# 下载 inference 模型并解压
wget https://paddleclas.bj.bcebos.com/models/PULC/person_exists_infer.tar && tar -xf person_exists_infer.tar
C
cuicheng01 已提交
92 93 94 95 96
```

解压完毕后,`models` 文件夹下应有如下文件结构:

```
97
├── person_exists_infer
C
cuicheng01 已提交
98 99 100 101 102
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
```

103
<a name="2.3.2"></a>  
C
cuicheng01 已提交
104

105
#### 2.3.2 模型推理预测
C
cuicheng01 已提交
106

107
<a name="2.3.2.1"></a>  
C
cuicheng01 已提交
108

109
##### 2.3.2.1 预测单张图像
C
cuicheng01 已提交
110

C
cuicheng01 已提交
111 112 113 114 115 116
返回 `deploy` 目录:

```
cd ../
```

117
运行下面的命令,对图像 `./images/PULC/person_exists/objects365_02035329.jpg` 进行有人/无人分类。
C
cuicheng01 已提交
118 119 120

```shell
# 使用下面的命令使用 GPU 进行预测
121
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794
C
cuicheng01 已提交
122
# 使用下面的命令使用 CPU 进行预测
123
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o PostProcess.ThreshOutput.threshold=0.9794 -o Global.use_gpu=False
C
cuicheng01 已提交
124 125 126 127 128
```

输出结果如下。

```
C
cuicheng01 已提交
129
objects365_02035329.jpg:	class id(s): [1], score(s): [1.00], label_name(s): ['someone']
C
cuicheng01 已提交
130 131 132
```


133
**备注:** 真实场景中往往需要在假正类率(Fpr)小于某一个指标下求真正类率(Tpr),该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的阈值为 `0.9794`,故此处的 `threshold``0.9794`。该阈值的确定方法可以参考[3.2.1节](#3.2.1)备注部分。
C
cuicheng01 已提交
134

135
<a name="2.3.2.2"></a>  
C
cuicheng01 已提交
136

137
#### 2.3.2.2 基于文件夹的批量预测
C
cuicheng01 已提交
138 139 140 141 142

如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。

```shell
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
143
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.infer_imgs="./images/PULC/person_exists/"
C
cuicheng01 已提交
144 145 146 147 148
```

终端中会输出该文件夹内所有图像的分类结果,如下所示。

```
C
cuicheng01 已提交
149 150
objects365_01780782.jpg:	class id(s): [0], score(s): [1.00], label_name(s): ['nobody']
objects365_02035329.jpg:	class id(s): [1], score(s): [1.00], label_name(s): ['someone']
C
cuicheng01 已提交
151 152
```

C
cuicheng01 已提交
153 154
其中,`someone` 表示该图里存在人,`nobody` 表示该图里不存在人。

C
cuicheng01 已提交
155 156
<a name="3"></a> 

157
## 3.PULC 有人/无人分类模型训练
C
cuicheng01 已提交
158 159 160 161

<a name="3.1"></a> 

### 3.1 数据准备
C
cuicheng01 已提交
162

163 164 165 166 167 168 169
<a name="3.1.1"></a> 

#### 3.1.1 数据集来源

本案例中所使用的所有数据集均为开源数据,`train` 集合为[MS-COCO 数据](https://cocodataset.org/#overview)的训练集的子集,`val` 集合为[Object365 数据](https://www.objects365.org/overview.html)的训练集的子集,`ImageNet_val`[ImageNet-1k 数据](https://www.image-net.org/)的验证集。

<a name="3.1.2"></a>     
C
cuicheng01 已提交
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
#### 3.1.2 数据集获取

在公开数据集的基础上经过后处理即可得到本案例需要的数据,具体处理方法如下:

- 训练集合,本案例处理了 MS-COCO 数据训练集的标注文件,如果某张图含有“人”的标签,且这个框的面积在整张图中的比例大于 10%,即认为该张图中含有人,如果某张图中没有“人”的标签,则认为该张图中不含有人。经过处理后,得到 92964 条可用数据,其中有人的数据有 39813 条,无人的数据 53151 条。

- 验证集合,从 Object365 数据中随机抽取一小部分数据,使用在 MS-COCO 上训练得到的较好的模型预测这些数据,将预测结果和数据的标注文件取交集,将交集的结果按照得到训练集的方法筛选出验证集合。经过处理后,得到 27820 条可用数据。其中有人的数据有 2255 条,无人的数据有 25565 条。

处理后的数据集部分数据可视化如下:

![](../../images/PULC/docs/person_exists_data_demo.png)

此处提供了经过上述方法处理好的数据,可以直接下载得到。


C
cuicheng01 已提交
186 187 188 189 190 191 192 193 194 195
进入 PaddleClas 目录。

```
cd path_to_PaddleClas
```

进入 `dataset/` 目录,下载并解压有人/无人场景的数据。

```shell
cd dataset
196 197
wget https://paddleclas.bj.bcebos.com/data/PULC/person_exists.tar
tar -xf person_exists.tar
C
cuicheng01 已提交
198 199 200
cd ../
```

201
执行上述命令后,`dataset/` 下存在 `person_exists` 目录,该目录中具有以下数据:
C
cuicheng01 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

```

├── train
│   ├── 000000000009.jpg
│   ├── 000000000025.jpg
...
├── val
│   ├── objects365_01780637.jpg
│   ├── objects365_01780640.jpg
...
├── ImageNet_val
│   ├── ILSVRC2012_val_00000001.JPEG
│   ├── ILSVRC2012_val_00000002.JPEG
...
├── train_list.txt
├── train_list.txt.debug
├── train_list_for_distill.txt
├── val_list.txt
└── val_list.txt.debug
```

224
其中 `train/``val/` 分别为训练集和验证集。`train_list.txt``val_list.txt` 分别为训练集和验证集的标签文件,`train_list.txt.debug``val_list.txt.debug` 分别为训练集和验证集的 `debug` 标签文件,其分别是 `train_list.txt``val_list.txt` 的子集,用该文件可以快速体验本案例的流程。`ImageNet_val/` 是 ImageNet-1k 的验证集,该集合和 `train` 集合的混合数据用于本案例的 `SKL-UGI知识蒸馏策略`,对应的训练标签文件为 `train_list_for_distill.txt` 。关于如何得到蒸馏的标签可以参考[知识蒸馏标签获得](@ruoyu)
C
cuicheng01 已提交
225 226


C
cuicheng01 已提交
227
<a name="3.2"></a> 
C
cuicheng01 已提交
228

C
cuicheng01 已提交
229
### 3.2 模型训练
C
cuicheng01 已提交
230

231
<a name="3.2.1"></a>  
C
cuicheng01 已提交
232

233
#### 3.2.1 基于默认超参数训练轻量级模型
C
cuicheng01 已提交
234

235
`ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
C
cuicheng01 已提交
236 237 238 239 240 241

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
242
        -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml 
C
cuicheng01 已提交
243 244
```

245
验证集的最佳指标在 `0.94-0.95` 之间(数据集较小,容易造成波动)。
C
cuicheng01 已提交
246 247 248

**备注:** 

249
* 此时使用的指标为Tpr,该指标描述了在假正类率(Fpr)小于某一个指标时的真正类率(Tpr),是产业中二分类问题常用的指标之一。在本案例中,Fpr 为千分之一。关于 Fpr 和 Tpr 的更多介绍,可以参考[这里](https://baike.baidu.com/item/AUC/19282953)
C
cuicheng01 已提交
250

251
* 在eval时,会打印出来当前最佳的 TprAtFpr 指标,具体地,其会打印当前的 `Fpr``Tpr` 值,以及当前的 `threshold`值,`Tpr` 值反映了在当前 `Fpr` 值下的召回率,该值越高,代表模型越好。`threshold` 表示当前最佳 `Fpr` 所对应的分类阈值,可用于后续模型部署落地等。
C
cuicheng01 已提交
252

253
<a name="3.2.2"></a> 
C
cuicheng01 已提交
254

255
#### 3.2.2 基于默认超参数训练教师模型
C
cuicheng01 已提交
256

257
复用 `ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
C
cuicheng01 已提交
258 259 260 261 262 263

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
264
        -c ./ppcls/configs/PULC/person_exists/PPLCNet/PPLCNet_x1_0.yaml \
C
cuicheng01 已提交
265 266 267
        -o Arch.name=ResNet101_vd
```

268
验证集的最佳指标为 `0.96-0.98` 之间,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`
C
cuicheng01 已提交
269

270
<a name="3.2.3"></a> 
C
cuicheng01 已提交
271

272
#### 3.2.3 基于默认超参数进行蒸馏训练
C
cuicheng01 已提交
273

274
配置文件`ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
C
cuicheng01 已提交
275 276 277 278 279 280

```shell
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
281
        -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0_distillation.yaml \
C
cuicheng01 已提交
282 283 284
        -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
```

285
验证集的最佳指标为 `0.95-0.97` 之间,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`
C
cuicheng01 已提交
286

C
cuicheng01 已提交
287

288
**备注:** 
C
cuicheng01 已提交
289

290
* 此时的默认超参数是经过`SHAS超参数搜索策略`得到的,关于此部分内容,可以参考[SHAS 超参数搜索策略](#TODO待添加链接)
C
cuicheng01 已提交
291 292


C
cuicheng01 已提交
293
<a name="4"></a>
C
cuicheng01 已提交
294

C
cuicheng01 已提交
295
## 4. 模型评估与推理部署
C
cuicheng01 已提交
296

C
cuicheng01 已提交
297 298 299
<a name="4.1"></a> 

### 4.1 模型评估
C
cuicheng01 已提交
300

C
cuicheng01 已提交
301
训练好模型之后,可以通过以下命令实现对模型指标的评估。
C
cuicheng01 已提交
302 303 304

```bash
python3 tools/eval.py \
305
    -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
C
cuicheng01 已提交
306
    -o Global.pretrained_model="output/DistillationModel/best_model_student"
C
cuicheng01 已提交
307 308
```

C
cuicheng01 已提交
309
<a name="4.2"></a> 
C
cuicheng01 已提交
310

C
cuicheng01 已提交
311
### 4.2 模型预测
C
cuicheng01 已提交
312 313 314 315 316

模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:

```python
python3 tools/infer.py \
317
    -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
C
cuicheng01 已提交
318
    -o Global.pretrained_model=output/DistillationModel/best_model_student \
C
cuicheng01 已提交
319 320 321 322 323 324
    -o Global.pretrained_model=Infer.PostProcess.threshold=0.9794
```

输出结果如下:

```
325
[{'class_ids': [0], 'scores': [0.9878496769815683], 'label_names': ['nobody'], 'file_name': './dataset/person_exists/val/objects365_01780637.jpg'}]
C
cuicheng01 已提交
326 327
```

328 329 330 331 332
**备注:** 
    
* 默认是对 `deploy/images/PULC/person_exists/objects365_02035329.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
    
* 这里的 `Infer.PostProcess.threshold` 的值需要根据实际场景来确定,此处的 `0.9794` 是在该场景中的 `val` 数据集在千分之一 Fpr 下得到的最佳 Tpr 所得到的。
C
cuicheng01 已提交
333

C
cuicheng01 已提交
334 335 336
<a name="4.3"></a> 

### 4.3 使用 inference 模型进行推理
C
cuicheng01 已提交
337

C
cuicheng01 已提交
338
<a name="4.3.1"></a> 
C
cuicheng01 已提交
339

C
cuicheng01 已提交
340
### 4.3.1 导出 inference 模型
C
cuicheng01 已提交
341 342 343 344 345 346

通过导出 inference 模型,PaddlePaddle 支持使用预测引擎进行预测推理。接下来介绍如何用预测引擎进行推理:
首先,对训练好的模型进行转换:

```bash
python3 tools/export_model.py \
347
    -c ./ppcls/configs/PULC/person_exists/PPLCNet_x1_0.yaml \
C
cuicheng01 已提交
348
    -o Global.pretrained_model=output/DistillationModel/best_model_student \
349
    -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_exists_infer
C
cuicheng01 已提交
350
```
351
执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_person_exists_infer` 文件夹,该文件夹中的模型与 [2.3 节](#2.3)下载的推理预测模型格式一致。
C
cuicheng01 已提交
352

C
cuicheng01 已提交
353
<a name="4.3.2"></a> 
C
cuicheng01 已提交
354

C
cuicheng01 已提交
355 356
### 4.3.2 基于 inference 模型 python 推理预测

C
cuicheng01 已提交
357
推理预测的脚本为:
C
cuicheng01 已提交
358 359

```
360
python3.7 python/predict_cls.py -c configs/PULC/person_exists/inference_person_exists.yaml -o Global.inference_model_dir="models/PPLCNet_x1_0_person_exists_infer" -o PostProcess.ThreshOutput.threshold=0.9794
C
cuicheng01 已提交
361 362
```

C
cuicheng01 已提交
363 364
**备注:**

365 366
- 此处的 `PostProcess.ThreshOutput.threshold` 由eval时的最佳 `threshold` 来确定。
- 更多关于推理的细节,可以参考[2.3节](#2.3)
C
cuicheng01 已提交
367

C
cuicheng01 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
<a name="4.3.3"></a>

### 4.3.3 基于 inference 模型 C++ 推理预测

PaddleClas 提供了 C++ 推理预测的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是Windows平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。

<a name="4.4"></a>

### 4.4 基于 Paddle Serving 完成模型服务化部署

PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。

<a name="4.5"></a>

### 4.5 基于 Paddle Lite 完成模型端侧部署

PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)
完成相应的部署工作。