squeezenet.py 6.6 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WuHaobo 已提交
15
import paddle
16 17 18
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
19 20
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
21

C
cuicheng01 已提交
22 23 24 25 26 27 28 29
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url

MODEL_URLS = {
              "SqueezeNet1_0": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams",
              "SqueezeNet1_1": "https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams",
             }

__all__ = list(MODEL_URLS.keys())
30

31 32 33 34 35 36 37 38

class MakeFireConv(nn.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 padding=0,
                 name=None):
W
fix  
wqz960 已提交
39
        super(MakeFireConv, self).__init__()
40
        self._conv = Conv2D(
41 42 43 44 45 46 47 48 49 50 51
            input_channels,
            output_channels,
            filter_size,
            padding=padding,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=ParamAttr(name=name + "_offset"))

    def forward(self, x):
        x = self._conv(x)
        x = F.relu(x)
        return x
52

W
WuHaobo 已提交
53

54
class MakeFire(nn.Layer):
55
    def __init__(self,
56 57 58 59 60
                 input_channels,
                 squeeze_channels,
                 expand1x1_channels,
                 expand3x3_channels,
                 name=None):
W
fix  
wqz960 已提交
61
        super(MakeFire, self).__init__()
62 63 64 65 66 67 68 69 70 71
        self._conv = MakeFireConv(
            input_channels, squeeze_channels, 1, name=name + "_squeeze1x1")
        self._conv_path1 = MakeFireConv(
            squeeze_channels, expand1x1_channels, 1, name=name + "_expand1x1")
        self._conv_path2 = MakeFireConv(
            squeeze_channels,
            expand3x3_channels,
            3,
            padding=1,
            name=name + "_expand3x3")
W
WuHaobo 已提交
72

73 74 75 76
    def forward(self, inputs):
        x = self._conv(inputs)
        x1 = self._conv_path1(x)
        x2 = self._conv_path2(x)
77
        return paddle.concat([x1, x2], axis=1)
W
WuHaobo 已提交
78

79 80

class SqueezeNet(nn.Layer):
81 82
    def __init__(self, version, class_dim=1000):
        super(SqueezeNet, self).__init__()
W
WuHaobo 已提交
83 84
        self.version = version

85
        if self.version == "1.0":
86
            self._conv = Conv2D(
87 88 89 90 91 92
                3,
                96,
                7,
                stride=2,
                weight_attr=ParamAttr(name="conv1_weights"),
                bias_attr=ParamAttr(name="conv1_offset"))
93
            self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
W
fix  
wqz960 已提交
94 95 96
            self._conv1 = MakeFire(96, 16, 64, 64, name="fire2")
            self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
            self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
97

W
fix  
wqz960 已提交
98 99 100 101
            self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
            self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
            self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
            self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
102

W
fix  
wqz960 已提交
103
            self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
W
WuHaobo 已提交
104
        else:
105
            self._conv = Conv2D(
106 107 108 109 110 111 112
                3,
                64,
                3,
                stride=2,
                padding=1,
                weight_attr=ParamAttr(name="conv1_weights"),
                bias_attr=ParamAttr(name="conv1_offset"))
113
            self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
W
fix  
wqz960 已提交
114 115
            self._conv1 = MakeFire(64, 16, 64, 64, name="fire2")
            self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
W
WuHaobo 已提交
116

W
fix  
wqz960 已提交
117 118
            self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
            self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
W
WuHaobo 已提交
119

W
fix  
wqz960 已提交
120 121 122 123
            self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
            self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
            self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
            self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
124

littletomatodonkey's avatar
littletomatodonkey 已提交
125
        self._drop = Dropout(p=0.5, mode="downscale_in_infer")
126
        self._conv9 = Conv2D(
127 128 129 130 131
            512,
            class_dim,
            1,
            weight_attr=ParamAttr(name="conv10_weights"),
            bias_attr=ParamAttr(name="conv10_offset"))
132
        self._avg_pool = AdaptiveAvgPool2D(1)
W
WuHaobo 已提交
133

134 135
    def forward(self, inputs):
        x = self._conv(inputs)
136
        x = F.relu(x)
137
        x = self._pool(x)
138
        if self.version == "1.0":
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
            x = self._conv1(x)
            x = self._conv2(x)
            x = self._conv3(x)
            x = self._pool(x)
            x = self._conv4(x)
            x = self._conv5(x)
            x = self._conv6(x)
            x = self._conv7(x)
            x = self._pool(x)
            x = self._conv8(x)
        else:
            x = self._conv1(x)
            x = self._conv2(x)
            x = self._pool(x)
            x = self._conv3(x)
            x = self._conv4(x)
            x = self._pool(x)
            x = self._conv5(x)
            x = self._conv6(x)
            x = self._conv7(x)
            x = self._conv8(x)
        x = self._drop(x)
        x = self._conv9(x)
162
        x = F.relu(x)
163
        x = self._avg_pool(x)
164
        x = paddle.squeeze(x, axis=[2, 3])
165 166
        return x

C
cuicheng01 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
    if pretrained is False:
        pass
    elif pretrained is True:
        load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
    elif isinstance(pretrained, str):
        load_dygraph_pretrain(model, pretrained)
    else:
        raise RuntimeError(
            "pretrained type is not available. Please use `string` or `boolean` type."
        )
        

def SqueezeNet1_0(pretrained=False, use_ssld=False, **kwargs):
    model = SqueezeNet(version="1.0", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["SqueezeNet1_0"], use_ssld=use_ssld)
183 184
    return model

W
WuHaobo 已提交
185

C
cuicheng01 已提交
186 187 188
def SqueezeNet1_1(pretrained=False, use_ssld=False, **kwargs):
    model = SqueezeNet(version="1.1", **kwargs)
    _load_pretrained(pretrained, model, MODEL_URLS["SqueezeNet1_1"], use_ssld=use_ssld)
189
    return model