README.md 38.8 KB
Newer Older
1
[简体中文](README_cn.md) | English
D
dyning 已提交
2

3
# PaddleClas
D
dyning 已提交
4

5
## Introduction
D
dyning 已提交
6

7
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
D
dyning 已提交
8

9
**Recent update**
littletomatodonkey's avatar
littletomatodonkey 已提交
10
- 2020.09.17 Add `Res2Net50_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.1%. Add `Res2Net101_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.9%.
11 12 13 14 15 16
- 2020.10.12 Add Paddle-Lite demo。
- 2020.10.10 Add cpp inference demo and improve FAQ tutorial.
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
- [more](./docs/en/update_history_en.md)
D
dyning 已提交
17

D
dyning 已提交
18

19
## Features
D
dyning 已提交
20

21
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
D
dyning 已提交
22

23
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
D
dyning 已提交
24

25
- Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
D
dyning 已提交
26

27
- Pretrained model with 100,000 categories: Based on `ResNet50_vd` model, Baidu open sourced the `ResNet50_vd` pretrained model trained on a 100,000-category dataset. In some practical scenarios, the accuracy based on the pretrained weights can be increased by up to 30%.
D
dyning 已提交
28

29
- A variety of training modes, including multi-machine training, mixed precision training, etc.
D
dyning 已提交
30

31
- A variety of inference and deployment solutions, including TensorRT inference, Paddle-Lite inference, model service deployment, model quantification, Paddle Hub, etc.
D
dyning 已提交
32

33
- Support Linux, Windows, macOS and other systems.
D
dyning 已提交
34

D
dyning 已提交
35

36
## Tutorials
littletomatodonkey's avatar
littletomatodonkey 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
- [Installation](./docs/en/tutorials/install_en.md)
- [Quick start PaddleClas in 30 minutes](./docs/en/tutorials/quick_start_en.md)
- [Model introduction and model zoo](./docs/en/models/models_intro_en.md)
    - [Model zoo overview](#Model_zoo_overview)
    - [ResNet and Vd series](#ResNet_and_Vd_series)
    - [Mobile series](#Mobile_series)
    - [SEResNeXt and Res2Net series](#SEResNeXt_and_Res2Net_series)
    - [DPN and DenseNet series](#DPN_and_DenseNet_series)
    - [HRNet series](#HRNet_series)
    - [Inception series](#Inception_series)
    - [EfficientNet and ResNeXt101_wsl series](#EfficientNet_and_ResNeXt101_wsl_series)
    - [ResNeSt and RegNet series](#ResNeSt_and_RegNet_series)
- Model training/evaluation
    - [Data preparation](./docs/en/tutorials/data_en.md)
    - [Model training and finetuning](./docs/en/tutorials/getting_started_en.md)
    - [Model evaluation](./docs/en/tutorials/getting_started_en.md)
- Model prediction/inference
    - [Prediction based on training engine](./docs/en/extension/paddle_inference_en.md)
    - [Python inference](./docs/en/extension/paddle_inference_en.md)
    - [C++ inference](./deploy/cpp_infer/readme_en.md)
    - [Serving deployment](./docs/en/extension/paddle_serving_en.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
59
    - [Mobile](./deploy/lite/readme_en.md)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    - [Model Quantization and Compression](docs/en/extension/paddle_quantization_en.md)
- Advanced tutorials
    - [Knowledge distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Data augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
- Applications
    - [Transfer learning](./docs/en/application/transfer_learning_en.md)
    - [Pretrained model with 100,000 categories](./docs/en/application/transfer_learning_en.md)
    - [Generic object detection](./docs/en/application/object_detection_en.md)
- FAQ
    - [General image classification problems](./docs/en/faq_en.md)
    - [PaddleClas FAQ](./docs/en/faq_en.md)
- [Competition support](./docs/en/competition_support_en.md)
- [License](#License)
- [Contribution](#Contribution)


<a name="Model_zoo_overview"></a>
### Model zoo overview

Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The  evaluation environment is as follows.

* CPU evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).


Curves of accuracy to the inference time of common server-side models are shown as follows.

![](./docs/images/models/T4_benchmark/t4.fp32.bs4.main_fps_top1.png)


Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.

![](./docs/images/models/mobile_arm_storage.png)

![](./docs/images/models/mobile_arm_top1.png)



<a name="ResNet_and_Vd_series"></a>
### ResNet and Vd series

Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to [ResNet and Vd series tutorial](./docs/en/models/ResNet_and_vd_en.md).

| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.45606               | 3.56305              | 3.66     | 11.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar)            |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.54557               | 3.85363              | 4.14     | 11.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar)         |
| ResNet34            | 0.7457    | 0.9214    | 2.34957               | 5.89821              | 7.36     | 21.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar)            |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar)         |
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.43427               | 6.22257              | 7.39     | 21.82     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_ssld_pretrained.tar)         |
| ResNet50            | 0.7650    | 0.9300    | 3.47712               | 7.84421              | 8.19     | 25.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar)            |
| ResNet50_vc         | 0.7835    | 0.9403    | 3.52346               | 8.10725              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar)         |
| ResNet50_vd         | 0.7912    | 0.9444    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar)         |
| ResNet50_vd_v2      | 0.7984    | 0.9493    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar)      |
| ResNet101           | 0.7756    | 0.9364    | 6.07125               | 13.40573             | 15.52    | 44.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar)           |
| ResNet101_vd        | 0.8017    | 0.9497    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar)        |
| ResNet152           | 0.7826    | 0.9396    | 8.50198               | 19.17073             | 23.05    | 60.19     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar)           |
| ResNet152_vd        | 0.8059    | 0.9530    | 8.54376               | 19.52157             | 23.53    | 60.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar)        |
| ResNet200_vd        | 0.8093    | 0.9533    | 10.80619              | 25.01731             | 30.53    | 74.74     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar)        |
| ResNet50_vd_<br>ssld    | 0.8239    | 0.9610    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar)    |
| ResNet50_vd_<br>ssld_v2 | 0.8300    | 0.9640    | 3.53131               | 8.09057              | 8.67     | 25.58     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 6.11704               | 13.76222             | 16.1     | 44.57     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)   |


<a name="Mobile_series"></a>
### Mobile series

Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/Mobile_en.md).

| Model                              | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address                                                                                                      |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 3.21985                | 0.07     | 0.46      | 1.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar)                |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 9.579599               | 0.28     | 1.31      | 5.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar)                 |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 19.436399              | 0.63     | 2.55      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar)                |
| MobileNetV1                      | 0.7099    | 0.8968    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar)                      |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 32.523048              | 1.11     | 4.19      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar)                 |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.79925                | 0.05     | 1.5       | 6.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar)                |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 8.7021                 | 0.17     | 1.93      | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar)                 |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 15.531351              | 0.35     | 2.58      | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar)                |
| MobileNetV2                      | 0.7215    | 0.9065    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar)                      |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 45.623848              | 1.32     | 6.76      | 26      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar)                 |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 74.291649              | 2.32     | 11.13     | 43      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar)                 |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 23.317699              | 0.6      | 3.44      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_ssld_pretrained.tar)                 |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 28.217701              | 0.714    | 7.44      | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_25_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar)           |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 13.5646                | 0.296    | 3.91      | 16      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_75_pretrained.tar)          |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 7.49315                | 0.138    | 2.67      | 11      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar)           |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 5.13695                | 0.077    | 2.1       | 8.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 9.2745                 | 0.195    | 3.62      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_25_pretrained.tar)          |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar)           |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 5.28435                | 0.088    | 2.37      | 9.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_75_pretrained.tar)          |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 3.35165                | 0.043    | 1.9       | 7.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_5_pretrained.tar)           |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_pretrained.tar)          |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.6352                 | 0.026    | 1.66      | 6.9     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x0_35_ssld_pretrained.tar)          |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 19.30835               | 0.45     | 5.47      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar)      |
| MobileNetV3_large_<br>x1_0_ssld_int8 | 0.7605    |     -      | 14.395                 |    -     |      -     | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_int8_pretrained.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 6.5463                 | 0.123    | 2.94      | 12      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar)      |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 10.941                 | 0.28     | 2.26      | 9       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar)                     |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 2.329                  | 0.03     | 0.6       | 2.7     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar)               |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.64335                | 0.04     | 0.64      | 2.8     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar)               |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 4.2613                 | 0.08     | 1.36      | 5.6     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar)                |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 19.3522                | 0.58     | 3.47      | 14      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar)                |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 34.770149              | 1.12     | 7.32      | 28      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar)                |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 16.023151              | 0.29     | 2.26      | 9.1     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar)               |
| DARTS_GS_4M                      | 0.7523    | 0.9215    | 47.204948              | 1.04     | 4.77      | 21      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_4M_pretrained.tar)                      |
| DARTS_GS_6M                      | 0.7603    | 0.9279    | 53.720802              | 1.22     | 5.69      | 24      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DARTS_GS_6M_pretrained.tar)                      |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.7143                 | 0.082    | 2.6       | 10      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x0_5_pretrained.pdparams)               |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 13.5587                | 0.294    | 5.2       | 20      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_0_pretrained.pdparams)               |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.9825                | 0.44     | 7.3       | 29      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_pretrained.pdparams)               |


<a name="SEResNeXt_and_Res2Net_series"></a>
### SEResNeXt and Res2Net series

Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to [SEResNext and_Res2Net series tutorial](./docs/en/models/SEResNext_and_Res2Net_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 4.47188               | 9.65722              | 8.52     | 25.7      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar)          |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 4.52712               | 9.93247              | 8.37     | 25.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar)       |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 5.4026                | 10.60273             | 9.01     | 25.72     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_14w_8s_pretrained.tar)          |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 8.08729               | 17.31208             | 16.67    | 45.22     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net101_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_pretrained.tar)      |
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 14.67806              | 32.35032             | 31.49    | 76.21     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net200_vd_26w_4s_ssld_pretrained.tar) |
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 7.56327               | 10.6134              | 8.02     | 23.64     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 7.62044               | 11.03385             | 8.5      | 23.66     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar)        |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 13.80962              | 18.4712              | 15.06    | 42.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar)           |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 13.94449              | 18.88759             | 15.54    | 42.38     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar)        |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 16.21503              | 19.96568             | 15.01    | 41.54     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 16.28103              | 20.25611             | 15.49    | 41.56     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar)       |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 30.4788               | 36.29801             | 29.05    | 78.12     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_64x4d_pretrained.tar)          |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 30.40456              | 36.77324             | 29.53    | 78.14     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar)       |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 24.86299              | 29.36764             | 22.01    | 56.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 25.03258              | 30.08987             | 22.49    | 56.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_32x4d_pretrained.tar)       |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 46.7564               | 56.34108             | 43.03    | 107.57    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar)          |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 47.18638              | 57.16257             | 43.52    | 107.59    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar)       |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.7691                | 4.19877              | 4.14     | 11.8      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet18_vd_pretrained.tar)            |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.88559               | 7.03291              | 7.84     | 21.98     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet34_vd_pretrained.tar)            |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 4.28393               | 10.38846             | 8.67     | 28.09     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar)            |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 8.74121               | 13.563               | 8.02     | 26.16     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar)        |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 9.17134               | 14.76192             | 10.76    | 26.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_vd_32x4d_pretrained.tar)     |
| SE_ResNeXt101_<br>32x4d       | 0.7912    | 0.9420    | 18.82604              | 25.31814             | 15.02    | 46.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar)       |
| SENet154_vd               | 0.8140    | 0.9548    | 53.79794              | 66.31684             | 45.83    | 114.29    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar)               |


<a name="DPN_and_DenseNet_series"></a>
### DPN and DenseNet series

Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to [DPN and DenseNet series tutorial](./docs/en/models/DPN_DenseNet_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|
| DenseNet121 | 0.7566    | 0.9258    | 4.40447               | 9.32623              | 5.69     | 7.98      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 10.39152              | 22.15555             | 15.49    | 28.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 6.43598               | 12.98832             | 6.74     | 14.15     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 8.20652               | 17.45838             | 8.61     | 20.01     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 12.14722              | 26.27707             | 11.54    | 33.37     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar) |
| DPN68       | 0.7678    | 0.9343    | 11.64915              | 12.82807             | 4.03     | 10.78     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar)       |
| DPN92       | 0.7985    | 0.9480    | 18.15746              | 23.87545             | 12.54    | 36.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar)       |
| DPN98       | 0.8059    | 0.9510    | 21.18196              | 33.23925             | 22.22    | 58.46     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar)       |
| DPN107      | 0.8089    | 0.9532    | 27.62046              | 52.65353             | 35.06    | 82.97     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar)      |
| DPN131      | 0.8070    | 0.9514    | 28.33119              | 46.19439             | 30.51    | 75.36     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar)      |

<a name="HRNet_series"></a>
### HRNet series

Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/HRNet_en.md).


| Model         | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                 |
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692    | 0.9339    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar) |
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 7.40636          | 13.29752         | 4.14     | 21.29     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_ssld_pretrained.tar) |
| HRNet_W30_C | 0.7804    | 0.9402    | 9.57594          | 17.35485         | 16.23    | 37.71     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W30_C_pretrained.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 9.49807          | 17.72921         | 17.86    | 41.23     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W32_C_pretrained.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 12.12202         | 25.68184         | 25.41    | 57.55     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W40_C_pretrained.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 13.19858         | 32.25202         | 29.79    | 67.06     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W44_C_pretrained.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 13.70761         | 34.43572         | 34.58    | 77.47     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W48_C_pretrained.tar) |
| HRNet_W64_C | 0.7930    | 0.9461    | 17.57527         | 47.9533          | 57.83    | 128.06    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W64_C_pretrained.tar) |


<a name="Inception_series"></a>
### Inception series

Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to [Inception series tutorial](./docs/en/models/Inception_en.md).


| Model                 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                         |
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.88038               | 4.48882              | 2.88     | 8.46      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar)          |
| Xception41         | 0.7930    | 0.9453    | 4.96939               | 17.01361             | 16.74    | 22.69     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar)         |
| Xception41_deeplab | 0.7955    | 0.9438    | 5.33541               | 17.55938             | 18.16    | 26.73     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar) |
| Xception65         | 0.8100    | 0.9549    | 7.26158               | 25.88778             | 25.95    | 35.48     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar)         |
| Xception65_deeplab | 0.8032    | 0.9449    | 7.60208               | 26.03699             | 27.37    | 39.52     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar) |
| Xception71         | 0.8111    | 0.9545    | 8.72457               | 31.55549             | 31.77    | 37.28     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar)         |
| InceptionV4        | 0.8077    | 0.9526    | 12.99342              | 25.23416             | 24.57    | 42.68     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar)        |


<a name="EfficientNet_and_ResNeXt101_wsl_series"></a>
### EfficientNet and ResNeXt101_wsl series

Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to [EfficientNet and ResNeXt101_wsl series tutorial](./docs/en/models/EfficientNet_and_ResNeXt101_wsl_en.md).
D
dyning 已提交
265

D
dyning 已提交
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
| Model                       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                               |
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 18.52528         | 34.25319         | 29.14    | 78.44     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar)      |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 25.60395         | 71.88384         | 57.55    | 152.66    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 54.87396         | 160.04337        | 115.17   | 303.11    | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar)     |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 99.01698256      | 315.91261        | 173.58   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar)     |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 160.0838242      | 595.99296        | 354.23   | 456.2     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar) |
| EfficientNetB0            | 0.7738    | 0.9331    | 3.442            | 6.11476          | 0.72     | 5.1       | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar)            |
| EfficientNetB1            | 0.7915    | 0.9441    | 5.3322           | 9.41795          | 1.27     | 7.52      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB1_pretrained.tar)            |
| EfficientNetB2            | 0.7985    | 0.9474    | 6.29351          | 10.95702         | 1.85     | 8.81      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB2_pretrained.tar)            |
| EfficientNetB3            | 0.8115    | 0.9541    | 7.67749          | 16.53288         | 3.43     | 11.84     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB3_pretrained.tar)            |
| EfficientNetB4            | 0.8285    | 0.9623    | 12.15894         | 30.94567         | 8.29     | 18.76     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB4_pretrained.tar)            |
| EfficientNetB5            | 0.8362    | 0.9672    | 20.48571         | 61.60252         | 19.51    | 29.61     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB5_pretrained.tar)            |
| EfficientNetB6            | 0.8400    | 0.9688    | 32.62402         | -                | 36.27    | 42        | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB6_pretrained.tar)            |
| EfficientNetB7            | 0.8430    | 0.9689    | 53.93823         | -                | 72.35    | 64.92     | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB7_pretrained.tar)            |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 2.3076           | 4.71886          | 0.72     | 4.65      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_small_pretrained.tar)      |

D
dyning 已提交
284

285 286
<a name="ResNeSt_and_RegNet_series"></a>
### ResNeSt and RegNet series
D
dyning 已提交
287

288
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to [ResNeSt and RegNet series tutorial](./docs/en/models/ResNeSt_RegNet_en.md).
D
dyning 已提交
289 290


291 292 293 294 295
| Model                    | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | Flops(G) | Params(M) | Download Address                                                                                                 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 3.45405                | 8.72680                | 8.68     | 26.3      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_fast_1s1x64d_pretrained.pdparams) |
| ResNeSt50              | 0.8102    | 0.9542    | 6.69042    | 8.01664                | 10.78    | 27.5      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/ResNeSt50_pretrained.pdparams)              |
| RegNetX_4GF            | 0.785     | 0.9416    |    6.46478              |      11.19862           | 8        | 22.1      | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/RegNetX_4GF_pretrained.pdparams)            |
D
dyning 已提交
296 297


298 299
<a name="License"></a>
## License
D
dyning 已提交
300

301
PaddleClas is released under the <a href="https://github.com/PaddlePaddle/PaddleClas/blob/master/LICENSE">Apache 2.0 license</a>
D
dyning 已提交
302 303


304 305
<a name="Contribution"></a>
## Contribution
D
dyning 已提交
306

307
Contributions are highly welcomed and we would really appreciate your feedback!!
D
dyning 已提交
308

309 310
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.