model_list.md 118.7 KB
Newer Older
1
<!-- 简体中文 | [English](../../en/algorithm_introduction/model_list.md) -->
C
cuicheng01 已提交
2 3


S
sibo2rr 已提交
4 5 6 7
# ImageNet 预训练模型库

## 目录

G
gaotingquan 已提交
8 9 10 11 12
- [模型库概览图](#Overview)
- [SSLD 知识蒸馏预训练模型](#SSLD)
  - [服务器端知识蒸馏模型](#SSLD_server)
  - [移动端知识蒸馏模型](#SSLD_mobile)
  - [Intel CPU 端知识蒸馏模型](#SSLD_intel_cpu)
G
gaotingquan 已提交
13 14 15 16
- CNN 系列模型
  - 服务器端模型
    - [PP-HGNet 系列](#PPHGNet)
    - [ResNet 系列](#ResNet)
G
gaotingquan 已提交
17
    - [SEResNeXt 与 Res2Net 系列](#SEResNeXt&Res2Net)
G
gaotingquan 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    - [DPN 与 DenseNet 系列](#DPN&DenseNet)
    - [HRNet 系列](#HRNet)
    - [Inception 系列](#Inception)
    - [EfficientNet 与 ResNeXt101_wsl 系列](#EfficientNetRes&NeXt101_wsl)
    - [ResNeSt 与 RegNet 系列](#ResNeSt&RegNet)
    - [RepVGG 系列](#RepVGG)
    - [MixNet 系列](#MixNet)
    - [ReXNet 系列](#ReXNet)
    - [HarDNet 系列](#HarDNet)
    - [DLA 系列](#DLA)
    - [RedNet 系列](#RedNet)
    - [其他模型](#Others)
  - 轻量级模型
    - [移动端系列](#Mobile)
    - [PP-LCNet & PP-LCNetV2 系列](#PPLCNet)
- Transformer 系列模型
  - 服务器端模型
    - [ViT_and_DeiT 系列](#ViT&DeiT)
    - [SwinTransformer 系列](#SwinTransformer)
    - [Twins 系列](#Twins)
    - [CSwinTransformer 系列](#CSwinTransformer)
    - [PVTV2 系列](#PVTV2)
    - [LeViT 系列](#LeViT)
    - [TNT 系列](#TNT)
  - 轻量级模型
    - [MobileViT 系列](#MobileViT)
44
- [参考文献](#reference)
S
sibo2rr 已提交
45

G
gaotingquan 已提交
46
<a name="Overview"></a>
S
sibo2rr 已提交
47

G
gaotingquan 已提交
48
## 模型库概览图
S
sibo2rr 已提交
49 50 51 52

基于 ImageNet1k 分类数据集,PaddleClas 支持 37 个系列分类网络结构以及对应的 217 个图像分类预训练模型,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现,下面所有的速度指标评估环境如下:
* Arm CPU 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
S
sibo2rr 已提交
53
* GPU 评估环境基于 V100 机器,在 FP32+TensorRT 配置下运行 2100 次测得(去除前 100 次的 warmup 时间)。
S
sibo2rr 已提交
54
* FLOPs 与 Params 通过 `paddle.flops()` 计算得到(PaddlePaddle 版本为 2.2)
C
cuicheng01 已提交
55 56 57

常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。

58
![](../../../images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png)
C
cuicheng01 已提交
59

G
gaotingquan 已提交
60
常见移动端模型的精度指标与其预测耗时的变化曲线如下图所示。
C
cuicheng01 已提交
61

62
![](../../../images/models/mobile_arm_top1.png)
C
cuicheng01 已提交
63

S
sibo2rr 已提交
64
部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示.
G
gaotingquan 已提交
65

66
![](../../../images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png)
G
gaotingquan 已提交
67

G
gaotingquan 已提交
68
<a name="SSLD"></a>
C
cuicheng01 已提交
69

G
gaotingquan 已提交
70
## SSLD 知识蒸馏预训练模型
71
基于 SSLD 知识蒸馏的预训练模型列表如下所示,更多关于 SSLD 知识蒸馏方案的介绍可以参考:[SSLD 知识蒸馏文档](../../algorithm_introduction/knowledge_distillation.md)
C
cuicheng01 已提交
72

G
gaotingquan 已提交
73
<a name="SSLD_server"></a>
S
sibo2rr 已提交
74

G
gaotingquan 已提交
75
### 服务器端知识蒸馏模型
C
cuicheng01 已提交
76

S
sibo2rr 已提交
77
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
78
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|
G
gaotingquan 已提交
79
| ResNet34_vd_ssld         | 0.797    | 0.760  | 0.037  | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)&emsp;&emsp;</span> | <span style="white-space:nowrap;">[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar)&emsp;&emsp;</span> |
S
sibo2rr 已提交
80
| ResNet50_vd_ssld | 0.830    | 0.792    | 0.039 | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
S
sibo2rr 已提交
81
| ResNet101_vd_ssld   | 0.837    | 0.802    | 0.035 | 4.43             | 8.25             | 12.60     | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
S
sibo2rr 已提交
82 83 84 85 86
| Res2Net50_vd_26w_4s_ssld | 0.831    | 0.798    | 0.033 | 3.59             | 6.35             | 9.50              | 4.28     | 25.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_ssld_infer.tar) |
| Res2Net101_vd_<br>26w_4s_ssld | 0.839    | 0.806    | 0.033 | 6.34             | 11.02            | 16.13             | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_ssld_infer.tar) |
| Res2Net200_vd_<br>26w_4s_ssld | 0.851    | 0.812    | 0.049 | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |
| HRNet_W18_C_ssld | 0.812    | 0.769   | 0.043 | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
| HRNet_W48_C_ssld | 0.836    | 0.790   | 0.046  | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
S
sibo2rr 已提交
87
| SE_HRNet_W64_C_ssld | 0.848    |  -    |  - | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
G
gaotingquan 已提交
88 89
| PPHGNet_tiny_ssld | 0.8195    |  0.7983  |  0.021 |  1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
| PPHGNet_small_ssld | 0.8382    |  0.8151  |  0.023 | 2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |
C
cuicheng01 已提交
90

G
gaotingquan 已提交
91
<a name="SSLD_mobile"></a>
S
sibo2rr 已提交
92

G
gaotingquan 已提交
93
### 移动端知识蒸馏模型
C
cuicheng01 已提交
94

S
sibo2rr 已提交
95
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
96
|---------------------|-----------|-----------|---------------|----------------|-----------|----------|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
S
sibo2rr 已提交
97 98
| MobileNetV1_ssld   | 0.779    | 0.710    | 0.069 | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
| MobileNetV2_ssld                 | 0.767    | 0.722  | 0.045  | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
S
sibo2rr 已提交
99
| MobileNetV3_small_x0_35_ssld          | 0.556    | 0.530 | 0.026   | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
S
sibo2rr 已提交
100 101 102
| MobileNetV3_large_x1_0_ssld      | 0.790    | 0.753  | 0.036  | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_x1_0_ssld      | 0.713    | 0.682  |  0.031  | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| GhostNet_x1_3_ssld                    | 0.794    | 0.757   | 0.037 | 19.16                            | 12.25     | 9.40     | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
C
cuicheng01 已提交
103

G
gaotingquan 已提交
104
<a name="SSLD_intel_cpu"></a>
C
cuicheng01 已提交
105

G
gaotingquan 已提交
106
### Intel CPU 端知识蒸馏模型
C
cuicheng01 已提交
107

S
sibo2rr 已提交
108
| 模型                  | Top-1 Acc | Reference<br>Top-1 Acc | Acc gain |  Intel-Xeon-Gold-6148 time(ms)<br>bs=1 | FLOPs(M) | Params(M)  | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
109 110 111 112
|---------------------|-----------|-----------|---------------|----------------|----------|-----------|-----------------------------------|-----------------------------------|
| PPLCNet_x0_5_ssld   | 0.661    | 0.631    | 0.030 | 2.05     | 47.28     |   1.89   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_ssld_infer.tar) |
| PPLCNet_x1_0_ssld   | 0.744    | 0.713    | 0.033 | 2.46     | 160.81     |   2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_ssld_infer.tar) |
| PPLCNet_x2_5_ssld   | 0.808    | 0.766    | 0.042 | 5.39     | 906.49     |   9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_ssld_infer.tar) |
C
cuicheng01 已提交
113

114
* 注: `Reference Top-1 Acc` 表示 PaddleClas 基于 ImageNet1k 数据集训练得到的预训练模型精度。
C
cuicheng01 已提交
115

C
cuicheng01 已提交
116 117
<a name="PPHGNet"></a>

G
gaotingquan 已提交
118 119
## PP-HGNet 系列

120
PP-HGNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-HGNet 系列模型文档](PP-HGNet.md)
G
gaotingquan 已提交
121 122 123 124

| 模型  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
| ---  | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| PPHGNet_tiny | 0.7983    |  0.9504    | 1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_infer.tar) |
C
cuicheng01 已提交
125
| PPHGNet_tiny_ssld | 0.8195    |  0.9612  |  1.77            |       -     |  -       | 4.54        | 14.75        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_tiny_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_tiny_ssld_infer.tar) |
G
gaotingquan 已提交
126
| PPHGNet_small | 0.8151    |  0.9582    |  2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_infer.tar) |
C
cuicheng01 已提交
127 128
| PPHGNet_small_ssld | 0.8382    |  0.9681  | 2.52            | -           |    -  | 8.53       | 24.38           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_small_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_small_ssld_infer.tar) |
| PPHGNet_base_ssld | 0.8500    |  0.9735  | 5.97            | -           |    -  | 25.14       | 71.62           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPHGNet_base_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPHGNet_base_ssld_infer.tar) |
G
gaotingquan 已提交
129 130 131 132

<a name="ResNet"></a>

## ResNet 系列 <sup>[[1](#ref1)]</sup>
C
cuicheng01 已提交
133

134
ResNet 及其 Vd 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNet 及其 Vd 系列模型文档](ResNet_and_vd.md)
C
cuicheng01 已提交
135

S
sibo2rr 已提交
136
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                      |
S
sibo2rr 已提交
137 138 139 140 141
|---------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ResNet18            | 0.7098    | 0.8992    | 1.22             | 2.19             | 3.63         | 1.83     | 11.70     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_infer.tar) |
| ResNet18_vd         | 0.7226    | 0.9080    | 1.26             | 2.28             | 3.89         | 2.07     | 11.72     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet18_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet18_vd_infer.tar) |
| ResNet34            | 0.7457    | 0.9214    | 1.97             | 3.25             | 5.70         | 3.68     | 21.81     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_infer.tar) |
| ResNet34_vd         | 0.7598    | 0.9298    | 2.00             | 3.28             | 5.84         | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_infer.tar) |
S
sibo2rr 已提交
142
| ResNet34_vd_ssld         | 0.7972    | 0.9490    | 2.00             | 3.28             | 5.84              | 3.93     | 21.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet34_vd_ssld_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet34_vd_ssld_infer.tar) |
S
sibo2rr 已提交
143 144 145 146 147 148 149 150
| ResNet50            | 0.7650    | 0.9300    | 2.54             | 4.79             | 7.40         | 4.11     | 25.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_infer.tar) |
| ResNet50_vc         | 0.7835    | 0.9403    | 2.57             | 4.83             | 7.52         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vc_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vc_infer.tar) |
| ResNet50_vd         | 0.7912    | 0.9444    | 2.60             | 4.86             | 7.63         | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_infer.tar) |
| ResNet101           | 0.7756    | 0.9364    | 4.37             | 8.18             | 12.38       | 7.83    | 44.65     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_infer.tar) |
| ResNet101_vd        | 0.8017    | 0.9497    | 4.43             | 8.25             | 12.60       | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_infer.tar) |
| ResNet152           | 0.7826    | 0.9396    | 6.05             | 11.41            | 17.33       | 11.56    | 60.34     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_infer.tar) |
| ResNet152_vd        | 0.8059    | 0.9530    | 6.11             | 11.51            | 17.59       | 11.80    | 60.36     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet152_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet152_vd_infer.tar) |
| ResNet200_vd        | 0.8093    | 0.9533    | 7.70             | 14.57            | 22.16       | 15.30    | 74.93     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet200_vd_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet200_vd_infer.tar) |
S
sibo2rr 已提交
151 152
| ResNet50_vd_<br>ssld | 0.8300    | 0.9640    | 2.60             | 4.86             | 7.63              | 4.35     | 25.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet50_vd_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet50_vd_ssld_infer.tar) |
| ResNet101_vd_<br>ssld   | 0.8373    | 0.9669    | 4.43             | 8.25             | 12.60             | 8.08     | 44.67     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ResNet101_vd_ssld_pretrained.pdparams)   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNet101_vd_ssld_infer.tar) |
C
cuicheng01 已提交
153

G
gaotingquan 已提交
154
<a name="SEResNeXt&Res2Net"></a>
C
cuicheng01 已提交
155

G
gaotingquan 已提交
156
## SEResNeXt 与 Res2Net 系列 <sup>[[7](#ref7)][[8](#ref8)][[9](#ref9)]</sup>
C
cuicheng01 已提交
157

158
SEResNeXt 与 Res2Net 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[SEResNeXt 与 Res2Net 系列模型文档](SEResNext_and_Res2Net.md)
C
cuicheng01 已提交
159 160


S
sibo2rr 已提交
161
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址               |
S
sibo2rr 已提交
162 163 164 165 166 167
|---------------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Res2Net50_<br>26w_4s          | 0.7933    | 0.9457    | 3.52             | 6.23             | 9.30         | 4.28     | 25.76      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_26w_4s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_26w_4s_infer.tar) |
| Res2Net50_vd_<br>26w_4s       | 0.7975    | 0.9491    | 3.59             | 6.35             | 9.50         | 4.52     | 25.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_vd_26w_4s_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_vd_26w_4s_infer.tar) |
| Res2Net50_<br>14w_8s          | 0.7946    | 0.9470    | 4.39             | 7.21             | 10.38       | 4.20     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net50_14w_8s_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net50_14w_8s_infer.tar) |
| Res2Net101_vd_<br>26w_4s      | 0.8064    | 0.9522    | 6.34             | 11.02            | 16.13       | 8.35    | 45.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net101_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net101_vd_26w_4s_infer.tar) |
| Res2Net200_vd_<br>26w_4s      | 0.8121    | 0.9571    | 11.45            | 19.77            | 28.81       | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_infer.tar) |
S
sibo2rr 已提交
168
| Res2Net200_vd_<br>26w_4s_ssld | 0.8513    | 0.9742    | 11.45            | 19.77            | 28.81             | 15.77    | 76.44     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Res2Net200_vd_26w_4s_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Res2Net200_vd_26w_4s_ssld_infer.tar) |
S
sibo2rr 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
| ResNeXt50_<br>32x4d           | 0.7775    | 0.9382    | 5.07             | 8.49             | 12.02        | 4.26     | 25.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_32x4d_infer.tar) |
| ResNeXt50_vd_<br>32x4d        | 0.7956    | 0.9462    | 5.29             | 8.68             | 12.33       | 4.50     | 25.12     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_32x4d_infer.tar) |
| ResNeXt50_<br>64x4d           | 0.7843    | 0.9413    | 9.39             | 13.97            | 20.56        | 8.02    | 45.29     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_64x4d_infer.tar) |
| ResNeXt50_vd_<br>64x4d        | 0.8012    | 0.9486    | 9.75             | 14.14            | 20.84       | 8.26    | 45.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_vd_64x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt50_vd_64x4d_infer.tar) |
| ResNeXt101_<br>32x4d          | 0.7865    | 0.9419    | 11.34            | 16.78            | 22.80       | 8.01    | 44.32     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x4d_infer.tar) |
| ResNeXt101_vd_<br>32x4d       | 0.8033    | 0.9512    | 11.36            | 17.01            | 23.07       | 8.25    | 44.33     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_32x4d_infer.tar) |
| ResNeXt101_<br>64x4d          | 0.7835    | 0.9452    | 21.57            | 28.08            | 39.49       | 15.52    | 83.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_64x4d_infer.tar) |
| ResNeXt101_vd_<br>64x4d       | 0.8078    | 0.9520    | 21.57            | 28.22            | 39.70       | 15.76    | 83.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_vd_64x4d_infer.tar) |
| ResNeXt152_<br>32x4d          | 0.7898    | 0.9433    | 17.14            | 25.11            | 33.79       | 11.76    | 60.15     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_32x4d_infer.tar) |
| ResNeXt152_vd_<br>32x4d       | 0.8072    | 0.9520    | 16.99            | 25.29            | 33.85       | 12.01    | 60.17      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_32x4d_infer.tar) |
| ResNeXt152_<br>64x4d          | 0.7951    | 0.9471    | 33.07            | 42.05            | 59.13       | 23.03    | 115.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_64x4d_infer.tar) |
| ResNeXt152_vd_<br>64x4d       | 0.8108    | 0.9534    | 33.30            | 42.41            | 59.42       | 23.27    | 115.29   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_vd_64x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt152_vd_64x4d_infer.tar) |
| SE_ResNet18_vd            | 0.7333    | 0.9138    | 1.48             | 2.70             | 4.32         | 2.07     | 11.81      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet18_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet18_vd_infer.tar) |
| SE_ResNet34_vd            | 0.7651    | 0.9320    | 2.42             | 3.69             | 6.29         | 3.93     | 22.00     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet34_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet34_vd_infer.tar) |
| SE_ResNet50_vd            | 0.7952    | 0.9475    | 3.11             | 5.99             | 9.34        | 4.36     | 28.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNet50_vd_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNet50_vd_infer.tar) |
| SE_ResNeXt50_<br>32x4d        | 0.7844    | 0.9396    | 6.39             | 11.01            | 14.94         | 4.27     | 27.63     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_32x4d_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_32x4d_infer.tar) |
| SE_ResNeXt50_vd_<br>32x4d     | 0.8024    | 0.9489    | 7.04             | 11.57            | 16.01       | 5.64    | 27.76     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt50_vd_32x4d_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt50_vd_32x4d_infer.tar) |
| SE_ResNeXt101_<br>32x4d       | 0.7939    | 0.9443    | 13.31            | 21.85            | 28.77       | 8.03    | 49.09     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SE_ResNeXt101_32x4d_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_ResNeXt101_32x4d_infer.tar) |
| SENet154_vd               | 0.8140    | 0.9548    | 34.83            | 51.22            | 69.74       | 24.45    | 122.03    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SENet154_vd_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SENet154_vd_infer.tar) |
C
cuicheng01 已提交
188

G
gaotingquan 已提交
189
<a name="DPN&DenseNet"></a>
C
cuicheng01 已提交
190

G
gaotingquan 已提交
191
## DPN 与 DenseNet 系列 <sup>[[14](#ref14)][[15](#ref15)]</sup>
C
cuicheng01 已提交
192

193
DPN 与 DenseNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[DPN 与 DenseNet 系列模型文档](DPN_DenseNet.md)
C
cuicheng01 已提交
194 195


S
sibo2rr 已提交
196
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址 |
S
sibo2rr 已提交
197 198 199 200 201 202 203 204 205 206 207
|-------------|-----------|-----------|-----------------------|----------------------|----------|-----------|--------------------------------------------------------------------------------------|-------------|-------------|
| DenseNet121 | 0.7566    | 0.9258    | 3.40             | 6.94             | 9.17         | 2.87     | 8.06      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet121_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet121_infer.tar) |
| DenseNet161 | 0.7857    | 0.9414    | 7.06             | 14.37            | 19.55       | 7.79    | 28.90     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet161_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet161_infer.tar) |
| DenseNet169 | 0.7681    | 0.9331    | 5.00             | 10.29            | 12.84       | 3.40     | 14.31     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet169_infer.tar) |
| DenseNet201 | 0.7763    | 0.9366    | 6.38             | 13.72            | 17.17       | 4.34     | 20.24     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet201_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet201_infer.tar) |
| DenseNet264 | 0.7796    | 0.9385    | 9.34             | 20.95            | 25.41       | 5.82    | 33.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DenseNet264_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DenseNet264_infer.tar) |
| DPN68       | 0.7678    | 0.9343    | 8.18             | 11.40            | 14.82       | 2.35     | 12.68     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN68_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN68_infer.tar) |
| DPN92       | 0.7985    | 0.9480    | 12.48            | 20.04            | 25.10       | 6.54    | 37.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN92_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN92_infer.tar) |
| DPN98       | 0.8059    | 0.9510    | 14.70            | 25.55            | 35.12       | 11.728    | 61.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN98_pretrained.pdparams)       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN98_infer.tar) |
| DPN107      | 0.8089    | 0.9532    | 19.46            | 35.62            | 50.22       | 18.38    | 87.13     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN107_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN107_infer.tar) |
| DPN131      | 0.8070    | 0.9514    | 19.64            | 34.60            | 47.42       | 16.09    | 79.48     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DPN131_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DPN131_infer.tar) |
C
cuicheng01 已提交
208

G
gaotingquan 已提交
209
<a name="HRNet"></a>
S
sibo2rr 已提交
210

G
gaotingquan 已提交
211
## HRNet 系列 <sup>[[13](#ref13)]</sup>
C
cuicheng01 已提交
212

213
HRNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[HRNet 系列模型文档](HRNet.md)
C
cuicheng01 已提交
214

S
sibo2rr 已提交
215
| 模型          | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                      | inference模型下载地址             |
S
sibo2rr 已提交
216 217
|-------------|-----------|-----------|------------------|------------------|----------|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| HRNet_W18_C | 0.7692    | 0.9339    | 6.66             | 8.94             | 11.95   | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_infer.tar) |
S
sibo2rr 已提交
218
| HRNet_W18_C_ssld | 0.81162    | 0.95804    | 6.66             | 8.94             | 11.95             | 4.32     | 21.35     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W18_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W18_C_ssld_infer.tar) |
S
sibo2rr 已提交
219 220 221 222 223
| HRNet_W30_C | 0.7804    | 0.9402    | 8.61             | 11.40            | 15.23   | 8.15   | 37.78     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W30_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W30_C_infer.tar) |
| HRNet_W32_C | 0.7828    | 0.9424    | 8.54             | 11.58            | 15.57   | 8.97    | 41.30     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W32_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W32_C_infer.tar) |
| HRNet_W40_C | 0.7877    | 0.9447    | 9.83             | 15.02            | 20.92   | 12.74    | 57.64     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W40_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W40_C_infer.tar) |
| HRNet_W44_C | 0.7900    | 0.9451    | 10.62            | 16.18            | 25.92   | 14.94    | 67.16     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W44_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W44_C_infer.tar) |
| HRNet_W48_C | 0.7895    | 0.9442    | 11.07            | 17.06            | 27.28   | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_infer.tar) |
S
sibo2rr 已提交
224
| HRNet_W48_C_ssld | 0.8363    | 0.9682    | 11.07            | 17.06            | 27.28             | 17.34    | 77.57     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W48_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W48_C_ssld_infer.tar) |
S
sibo2rr 已提交
225 226
| HRNet_W64_C | 0.7930    | 0.9461    | 13.82            | 21.15            | 35.51    | 28.97    | 128.18    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/HRNet_W64_C_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HRNet_W64_C_infer.tar) |
| SE_HRNet_W64_C_ssld | 0.8475    |  0.9726    | 17.11            | 26.87            |    43.24 | 29.00    | 129.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SE_HRNet_W64_C_ssld_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SE_HRNet_W64_C_ssld_infer.tar) |
C
cuicheng01 已提交
227

G
gaotingquan 已提交
228
<a name="Inception"></a>
C
cuicheng01 已提交
229

G
gaotingquan 已提交
230
## Inception 系列 <sup>[[10](#ref10)][[11](#ref11)][[12](#ref12)][[26](#ref26)]</sup>
C
cuicheng01 已提交
231

232
Inception 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[Inception 系列模型文档](Inception.md)
C
cuicheng01 已提交
233

S
sibo2rr 已提交
234
| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                              | inference模型下载地址                     |
S
sibo2rr 已提交
235 236 237 238 239 240 241 242 243
|--------------------|-----------|-----------|-----------------------|----------------------|----------|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| GoogLeNet          | 0.7070    | 0.8966    | 1.41             | 3.25             | 5.00         | 1.44     | 11.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GoogLeNet_infer.tar) |
| Xception41         | 0.7930    | 0.9453    | 3.58             | 8.76             | 16.61       | 8.57    | 23.02     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_infer.tar) |
| Xception41_deeplab | 0.7955    | 0.9438    | 3.81             | 9.16             | 17.20       | 9.28    | 27.08     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception41_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception41_deeplab_infer.tar) |
| Xception65         | 0.8100    | 0.9549    | 5.45             | 12.78            | 24.53       | 13.25    | 36.04     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_infer.tar) |
| Xception65_deeplab | 0.8032    | 0.9449    | 5.65             | 13.08            | 24.61       | 13.96    | 40.10     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception65_deeplab_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception65_deeplab_infer.tar) |
| Xception71         | 0.8111    | 0.9545    | 6.19             | 15.34            | 29.21       | 16.21    | 37.86     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Xception71_pretrained.pdparams)         | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Xception71_infer.tar) |
| InceptionV3        | 0.7914    | 0.9459    | 4.78             | 8.53             | 12.28        | 5.73    | 23.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/InceptionV3_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV3_infer.tar) |
| InceptionV4        | 0.8077    | 0.9526    | 8.93             | 15.17            | 21.56       | 12.29    | 42.74     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/InceptionV4_pretrained.pdparams)        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/InceptionV4_infer.tar) |
C
cuicheng01 已提交
244

G
gaotingquan 已提交
245
<a name="EfficientNet&ResNeXt101_wsl"></a>
C
cuicheng01 已提交
246

G
gaotingquan 已提交
247
## EfficientNet 与 ResNeXt101_wsl 系列 <sup>[[16](#ref16)][[17](#ref17)]</sup>
C
cuicheng01 已提交
248

249
EfficientNet 与 ResNeXt101_wsl 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[EfficientNet 与 ResNeXt101_wsl 系列模型文档](EfficientNet_and_ResNeXt101_wsl.md)
C
cuicheng01 已提交
250

S
sibo2rr 已提交
251
| 模型                        | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                    | inference模型下载地址                           |
S
sibo2rr 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|---------------------------|-----------|-----------|------------------|------------------|----------|-----------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| ResNeXt101_<br>32x8d_wsl      | 0.8255    | 0.9674    | 13.55            | 23.39            | 36.18   | 16.48    | 88.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x8d_wsl_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x8d_wsl_infer.tar) |
| ResNeXt101_<br>32x16d_wsl     | 0.8424    | 0.9726    | 21.96            | 38.35            | 63.29   | 36.26    | 194.36    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x16d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x16d_wsl_infer.tar) |
| ResNeXt101_<br>32x32d_wsl     | 0.8497    | 0.9759    | 37.28            | 76.50            | 121.56 | 87.28   | 469.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x32d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x32d_wsl_infer.tar) |
| ResNeXt101_<br>32x48d_wsl     | 0.8537    | 0.9769    | 55.07            | 124.39           | 205.01 | 153.57   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x48d_wsl_pretrained.pdparams)     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeXt101_32x48d_wsl_infer.tar) |
| Fix_ResNeXt101_<br>32x48d_wsl | 0.8626    | 0.9797    | 55.01            | 122.63           | 204.66 | 313.41   | 829.26     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/Fix_ResNeXt101_32x48d_wsl_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/Fix_ResNeXt101_32x48d_wsl_infer.tar) |
| EfficientNetB0            | 0.7738    | 0.9331    | 1.96             | 3.71             | 5.56     | 0.40     | 5.33       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_infer.tar) |
| EfficientNetB1            | 0.7915    | 0.9441    | 2.88             | 5.40             | 7.63     | 0.71     | 7.86      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB1_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB1_infer.tar) |
| EfficientNetB2            | 0.7985    | 0.9474    | 3.26             | 6.20             | 9.17    | 1.02     | 9.18      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB2_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB2_infer.tar) |
| EfficientNetB3            | 0.8115    | 0.9541    | 4.52             | 8.85             | 13.54   | 1.88     | 12.324     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB3_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB3_infer.tar) |
| EfficientNetB4            | 0.8285    | 0.9623    | 6.78             | 15.47            | 24.95   | 4.51     | 19.47     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB4_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB4_infer.tar) |
| EfficientNetB5            | 0.8362    | 0.9672    | 10.97            | 27.24            | 45.93   | 10.51    | 30.56     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB5_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB5_infer.tar) |
| EfficientNetB6            | 0.8400    | 0.9688    | 17.09            | 43.32            | 76.90          | 19.47    | 43.27        | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB6_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB6_infer.tar) |
| EfficientNetB7            | 0.8430    | 0.9689    | 25.91            | 71.23            | 128.20         | 38.45    | 66.66     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB7_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB7_infer.tar) |
| EfficientNetB0_<br>small      | 0.7580    | 0.9258    | 1.24             | 2.59             | 3.92     | 0.40     | 4.69      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/EfficientNetB0_small_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/EfficientNetB0_small_infer.tar) |
C
cuicheng01 已提交
267

G
gaotingquan 已提交
268
<a name="ResNeSt&RegNet"></a>
C
cuicheng01 已提交
269

G
gaotingquan 已提交
270
## ResNeSt 与 RegNet 系列 <sup>[[24](#ref24)][[25](#ref25)]</sup>
C
cuicheng01 已提交
271

272
ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[ResNeSt 与 RegNet 系列模型文档](ResNeSt_RegNet.md)
C
cuicheng01 已提交
273

S
sibo2rr 已提交
274
| 模型                   | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                      | inference模型下载地址                          |
S
sibo2rr 已提交
275 276 277 278
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ResNeSt50_<br>fast_1s1x64d | 0.8035    | 0.9528    | 2.73             | 5.33             | 8.24           | 4.36     | 26.27      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_fast_1s1x64d_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_fast_1s1x64d_infer.tar) |
| ResNeSt50              | 0.8083    | 0.9542    | 7.36             | 10.23            | 13.84          | 5.40    | 27.54      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeSt50_pretrained.pdparams)              | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ResNeSt50_infer.tar) |
| RegNetX_4GF            | 0.785     | 0.9416    | 6.46             | 8.48             |      11.45     | 4.00        | 22.23      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RegNetX_4GF_pretrained.pdparams)            | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RegNetX_4GF_infer.tar) |
C
cuicheng01 已提交
279

G
gaotingquan 已提交
280
<a name="RepVGG"></a>
C
cuicheng01 已提交
281

G
gaotingquan 已提交
282
## RepVGG 系列 <sup>[[36](#ref36)]</sup>
C
cuicheng01 已提交
283

284
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](RepVGG.md)
C
cuicheng01 已提交
285

S
sibo2rr 已提交
286 287 288 289 290 291 292 293 294 295 296 297
| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| RepVGG_A0   | 0.7131    | 0.9016    |  |  |  | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) |
| RepVGG_A1   | 0.7380    | 0.9146    |  |  |  | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) |
| RepVGG_A2   | 0.7571    | 0.9264    |  |  |  | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) |
| RepVGG_B0   | 0.7450    | 0.9213    |  |  |  | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) |
| RepVGG_B1   | 0.7773    | 0.9385    |  |  |  | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) |
| RepVGG_B2   | 0.7813    | 0.9410    |  |  |  | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) |
| RepVGG_B1g2 | 0.7732    | 0.9359    |  |  |  | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) |
| RepVGG_B1g4 | 0.7675    | 0.9335    |  |  |  | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) |
| RepVGG_B2g4 | 0.7881    | 0.9448    |  |  |  | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
| RepVGG_B3g4 | 0.7965    | 0.9485    |  |  |  | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
C
cuicheng01 已提交
298

G
gaotingquan 已提交
299
<a name="MixNet"></a>
C
cuicheng01 已提交
300

G
gaotingquan 已提交
301
## MixNet 系列 <sup>[[29](#ref29)]</sup>
S
sibo2rr 已提交
302

303
关于 MixNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MixNet 系列模型文档](MixNet.md)
C
cuicheng01 已提交
304

S
sibo2rr 已提交
305
| 模型     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                           | inference模型下载地址                                        |
S
sibo2rr 已提交
306 307 308 309
| -------- | --------- | --------- | ---------------- | ---------------- | ----------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| MixNet_S | 0.7628    | 0.9299    | 2.31             | 3.63             | 5.20              | 252.977  | 4.167     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_S_infer.tar) |
| MixNet_M | 0.7767    | 0.9364    | 2.84             | 4.60             | 6.62              | 357.119  | 5.065     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_M_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_M_infer.tar) |
| MixNet_L | 0.7860    | 0.9437    | 3.16             | 5.55             | 8.03              | 579.017  | 7.384     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MixNet_L_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MixNet_L_infer.tar) |
C
cuicheng01 已提交
310

G
gaotingquan 已提交
311
<a name="ReXNet"></a>
S
sibo2rr 已提交
312

G
gaotingquan 已提交
313
## ReXNet 系列 <sup>[[30](#ref30)]</sup>
C
cuicheng01 已提交
314

315
关于 ReXNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[ReXNet 系列模型文档](ReXNet.md)
C
cuicheng01 已提交
316

S
sibo2rr 已提交
317
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
318 319 320 321 322 323
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| ReXNet_1_0 | 0.7746    | 0.9370    | 3.08 | 4.15 | 5.49 | 0.415    | 4.84     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_0_infer.tar) |
| ReXNet_1_3 | 0.7913    | 0.9464    | 3.54 | 4.87 | 6.54 | 0.68    | 7.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_3_infer.tar) |
| ReXNet_1_5 | 0.8006    | 0.9512    | 3.68 | 5.31 | 7.38 | 0.90    | 9.79     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_1_5_infer.tar) |
| ReXNet_2_0 | 0.8122    | 0.9536    | 4.30 | 6.54 | 9.19 | 1.56    | 16.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_2_0_infer.tar) |
| ReXNet_3_0 | 0.8209    | 0.9612    | 5.74 | 9.49 | 13.62 | 3.44    | 34.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ReXNet_3_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ReXNet_3_0_infer.tar) |
C
cuicheng01 已提交
324

G
gaotingquan 已提交
325
<a name="HarDNet"></a>
C
cuicheng01 已提交
326

G
gaotingquan 已提交
327
## HarDNet 系列 <sup>[[37](#ref37)]</sup>
S
sibo2rr 已提交
328

329
关于 HarDNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[HarDNet 系列模型文档](HarDNet.md)
C
cuicheng01 已提交
330

S
sibo2rr 已提交
331
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
332 333 334 335 336
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| HarDNet39_ds | 0.7133    |0.8998    | 1.40 | 2.30 | 3.33 | 0.44   |  3.51    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet39_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet39_ds_infer.tar) |
| HarDNet68_ds |0.7362    | 0.9152   | 2.26 | 3.34 | 5.06 | 0.79   | 4.20 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_ds_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_ds_infer.tar) |
| HarDNet68| 0.7546   | 0.9265   | 3.58 | 8.53 | 11.58 | 4.26   | 17.58    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet68_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet68_infer.tar) |
| HarDNet85 | 0.7744   | 0.9355   | 6.24 | 14.85 | 20.57 | 9.09   | 36.69  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/HarDNet85_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/HarDNet85_infer.tar) |
C
cuicheng01 已提交
337

G
gaotingquan 已提交
338
<a name="DLA"></a>
S
sibo2rr 已提交
339

G
gaotingquan 已提交
340
## DLA 系列 <sup>[[38](#ref38)]</sup>
C
cuicheng01 已提交
341

342
关于 DLA 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[DLA 系列模型文档](DLA.md)
C
cuicheng01 已提交
343

S
sibo2rr 已提交
344
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
345 346 347 348 349 350 351 352 353 354
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| DLA102 | 0.7893    |0.9452    | 4.95 | 8.08 | 12.40 | 7.19   |  33.34    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102_infer.tar) |
| DLA102x2 |0.7885    | 0.9445  | 19.58 | 23.97 | 31.37 | 9.34   | 41.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x2_infer.tar) |
| DLA102x| 0.781   | 0.9400   | 11.12 | 15.60 | 20.37 | 5.89  | 26.40    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA102x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA102x_infer.tar) |
| DLA169 | 0.7809  | 0.9409   | 7.70 | 12.25 | 18.90 | 11.59  | 53.50  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA169_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA169_infer.tar) |
| DLA34 | 0.7603   | 0.9298    | 1.83 | 3.37 | 5.98 | 3.07   |  15.76    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA34_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA34_infer.tar) |
| DLA46_c |0.6321   | 0.853   | 1.06 | 2.08 | 3.23 | 0.54   | 1.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA46_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA46_c_infer.tar) |
| DLA60 | 0.7610   | 0.9292   | 2.78 | 5.36 | 8.29 | 4.26   | 22.08    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60_infer.tar) |
| DLA60x_c | 0.6645   | 0.8754   | 1.79 | 3.68 | 5.19 | 0.59   | 1.33  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_c_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_c_infer.tar) |
| DLA60x | 0.7753  | 0.9378  | 5.98 | 9.24 | 12.52 | 3.54   | 17.41  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DLA60x_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DLA60x_infer.tar) |
C
cuicheng01 已提交
355

G
gaotingquan 已提交
356
<a name="RedNet"></a>
C
cuicheng01 已提交
357

G
gaotingquan 已提交
358
## RedNet 系列 <sup>[[39](#ref39)]</sup>
S
sibo2rr 已提交
359

360
关于 RedNet 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RedNet 系列模型文档](RedNet.md)
C
cuicheng01 已提交
361

S
sibo2rr 已提交
362
| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
S
sibo2rr 已提交
363 364 365 366 367 368
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| RedNet26 | 0.7595   |0.9319  | 4.45 | 15.16 | 29.03 | 1.69   |  9.26    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet26_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet26_infer.tar) |
| RedNet38 |0.7747  | 0.9356  | 6.24 | 21.39 | 41.26 | 2.14   | 12.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet38_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet38_infer.tar) |
| RedNet50| 0.7833  | 0.9417   | 8.04 | 27.71 | 53.73 | 2.61   | 15.60    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet50_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet50_infer.tar) |
| RedNet101 | 0.7894  | 0.9436   | 13.07 | 44.12 | 83.28 | 4.59  | 25.76 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet101_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet101_infer.tar) |
| RedNet152 | 0.7917  | 0.9440   | 18.66 | 63.27 | 119.48 | 6.57  | 34.14  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RedNet152_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RedNet152_infer.tar) |
C
cuicheng01 已提交
369

G
gaotingquan 已提交
370
<a name="Others"></a>
S
sibo2rr 已提交
371

G
gaotingquan 已提交
372
## 其他模型
C
cuicheng01 已提交
373

G
gaotingquan 已提交
374
关于 AlexNet <sup>[[18](#ref18)]</sup>、SqueezeNet 系列 <sup>[[19](#ref19)]</sup>、VGG 系列 <sup>[[20](#ref20)]</sup>、DarkNet53 <sup>[[21](#ref21)]</sup> 等模型的精度、速度指标如下表所示,更多介绍可以参考:[其他模型文档](../models/Others.md)
C
cuicheng01 已提交
375

G
gaotingquan 已提交
376 377 378 379 380 381 382 383 384 385
| 模型                     | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| AlexNet       | 0.567 | 0.792 | 0.81 | 1.50             | 2.33 | 0.71 | 61.10 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/AlexNet_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/AlexNet_infer.tar) |
| SqueezeNet1_0 | 0.596 | 0.817 | 0.68             | 1.64             | 2.62    | 0.78 | 1.25 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_0_infer.tar) |
| SqueezeNet1_1 | 0.601 | 0.819 | 0.62             | 1.30             | 2.09 | 0.35   | 1.24 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SqueezeNet1_1_infer.tar) |
| VGG11 | 0.693 | 0.891 | 1.72             | 4.15             | 7.24 | 7.61 | 132.86 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG11_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG11_infer.tar) |
| VGG13 | 0.700 | 0.894 | 2.02             | 5.28             | 9.54 | 11.31 | 133.05 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG13_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG13_infer.tar) |
| VGG16 | 0.720 | 0.907 | 2.48             | 6.79             | 12.33 | 15.470 | 138.35 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG16_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG16_infer.tar) |
| VGG19 | 0.726 | 0.909 | 2.93             | 8.28             | 15.21 | 19.63 | 143.66 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/VGG19_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/VGG19_infer.tar) |
| DarkNet53 | 0.780 | 0.941 | 2.79 | 6.42 | 10.89 | 9.31 | 41.65 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DarkNet53_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DarkNet53_infer.tar) |
C
cuicheng01 已提交
386

G
gaotingquan 已提交
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

<a name="Mobile"></a>

## 移动端系列 <sup>[[3](#ref3)][[4](#ref4)][[5](#ref5)][[6](#ref6)][[23](#ref23)]</sup>

移动端系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[移动端系列模型文档](../models/Mobile.md)

| 模型          | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1, thread=1 | SD855 time(ms)<br/>bs=1, thread=2 | SD855 time(ms)<br/>bs=1, thread=4 | FLOPs(M) | Params(M) | <span style="white-space:nowrap;">模型大小(M)</span> | 预训练模型下载地址 | inference模型下载地址 |
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| MobileNetV1_<br>x0_25                | 0.5143    | 0.7546    | 2.88 | 1.82  | 1.26  | 43.56     | 0.48      | 1.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_25_infer.tar) |
| MobileNetV1_<br>x0_5                 | 0.6352    | 0.8473    | 8.74                             | 5.26                              | 3.09                              | 154.57     | 1.34      | 5.2     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_5_infer.tar) |
| MobileNetV1_<br>x0_75                | 0.6881    | 0.8823    | 17.84 | 10.61 | 6.21 | 333.00     | 2.60      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_x0_75_infer.tar) |
| MobileNetV1                      | 0.7099    | 0.8968    | 30.24 | 17.86 | 10.30 | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar) |
| MobileNetV1_<br>ssld                 | 0.7789    | 0.9394    | 30.24                            | 17.86                             | 10.30                             | 578.88     | 4.25      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV1_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_ssld_infer.tar) |
| MobileNetV2_<br>x0_25                | 0.5321    | 0.7652    | 3.46 | 2.51 | 2.03 | 34.18     | 1.53       | 6.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_25_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_25_infer.tar) |
| MobileNetV2_<br>x0_5                 | 0.6503    | 0.8572    | 7.69 | 4.92  | 3.57  | 99.48     | 1.98      | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_5_infer.tar) |
| MobileNetV2_<br>x0_75                | 0.6983    | 0.8901    | 13.69 | 8.60 | 5.82 | 197.37     | 2.65      | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x0_75_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x0_75_infer.tar) |
| MobileNetV2                      | 0.7215    | 0.9065    | 20.74 | 12.71 | 8.10 | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_pretrained.pdparams)                      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_infer.tar) |
| MobileNetV2_<br>x1_5                 | 0.7412    | 0.9167    | 40.79 | 24.49 | 15.50 | 702.35     | 6.90      | 26      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x1_5_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x1_5_infer.tar) |
| MobileNetV2_<br>x2_0                 | 0.7523    | 0.9258    | 67.50 | 40.03 | 25.55 | 1217.25     | 11.33     | 43      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_x2_0_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_x2_0_infer.tar) |
| MobileNetV2_<br>ssld                 | 0.7674    | 0.9339    | 20.74                            | 12.71                             | 8.10                              | 327.84      | 3.54      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV2_ssld_pretrained.pdparams)                 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV2_ssld_infer.tar) |
| MobileNetV3_<br>large_x1_25          | 0.7641    | 0.9295    | 24.52 | 14.76 | 9.89 | 362.70    | 7.47      | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_25_infer.tar) |
| MobileNetV3_<br>large_x1_0           | 0.7532    | 0.9231    | 16.55 | 10.09 | 6.84 | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar) |
| MobileNetV3_<br>large_x0_75          | 0.7314    | 0.9108    | 11.53  | 7.06  | 4.94  | 151.70    | 3.93      | 16      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_75_infer.tar) |
| MobileNetV3_<br>large_x0_5           | 0.6924    | 0.8852    | 6.50 | 4.22  | 3.15 | 71.83    | 2.69      | 11      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_5_infer.tar) |
| MobileNetV3_<br>large_x0_35          | 0.6432    | 0.8546    | 4.43 | 3.11  | 2.41 | 40.90    | 2.11       | 8.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x0_35_infer.tar) |
| MobileNetV3_<br>small_x1_25          | 0.7067    | 0.8951    | 7.88   | 4.91  | 3.45  | 100.07    | 3.64      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_25_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_25_infer.tar) |
| MobileNetV3_<br>small_x1_0           | 0.6824    | 0.8806    | 5.63   | 3.65  | 2.60 | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_infer.tar) |
| MobileNetV3_<br>small_x0_75          | 0.6602    | 0.8633    | 4.50  | 2.96  | 2.19  | 46.02    | 2.38      | 9.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_75_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_75_infer.tar) |
| MobileNetV3_<br>small_x0_5           | 0.5921    | 0.8152    | 2.89 | 2.04 | 1.62  | 22.60    | 1.91       | 7.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_5_pretrained.pdparams)           | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_5_infer.tar) |
| MobileNetV3_<br>small_x0_35          | 0.5303    | 0.7637    | 2.23  | 1.66    | 1.43   | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_infer.tar) |
| MobileNetV3_<br>small_x0_35_ssld          | 0.5555    | 0.7771    | 2.23 | 1.66 | 1.43 | 14.56    | 1.67      | 6.9     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x0_35_ssld_pretrained.pdparams)          | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x0_35_ssld_infer.tar) |
| MobileNetV3_<br>large_x1_0_ssld      | 0.7896    | 0.9448    | 16.55                            | 10.09                             | 6.84                              | 229.66     | 5.50      | 21      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_large_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_ssld_infer.tar) |
| MobileNetV3_small_<br>x1_0_ssld      | 0.7129    | 0.9010    | 5.63                             | 3.65                              | 2.60                              | 63.67    | 2.95      | 12      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/MobileNetV3_small_x1_0_ssld_pretrained.pdparams)      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_small_x1_0_ssld_infer.tar) |
| ShuffleNetV2                     | 0.6880    | 0.8845    | 9.72  | 5.97   | 4.13    | 148.86     | 2.29      | 9       | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_0_pretrained.pdparams)                     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_0_infer.tar) |
| ShuffleNetV2_<br>x0_25               | 0.4990    | 0.7379    | 1.94    | 1.53   | 1.43    | 18.95     | 0.61       | 2.7     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_25_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_25_infer.tar) |
| ShuffleNetV2_<br>x0_33               | 0.5373    | 0.7705    | 2.23 | 1.70 | 1.79   | 24.04     | 0.65      | 2.8     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_33_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_33_infer.tar) |
| ShuffleNetV2_<br>x0_5                | 0.6032    | 0.8226    | 3.67   | 2.63   | 2.06   | 42.58     | 1.37      | 5.6     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x0_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x0_5_infer.tar) |
| ShuffleNetV2_<br>x1_5                | 0.7163    | 0.9015    | 17.21 | 10.56 | 6.81  | 301.35     | 3.53      | 14      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x1_5_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x1_5_infer.tar) |
| ShuffleNetV2_<br>x2_0                | 0.7315    | 0.9120    | 31.21 | 18.98 | 11.65 | 571.70     | 7.40      | 28      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_x2_0_pretrained.pdparams)                | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_x2_0_infer.tar) |
| ShuffleNetV2_<br>swish               | 0.7003    | 0.8917    | 31.21 | 9.06 | 5.74 | 148.86     | 2.29      | 9.1     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ShuffleNetV2_swish_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ShuffleNetV2_swish_infer.tar) |
| GhostNet_<br>x0_5                    | 0.6688    | 0.8695    | 5.28   | 3.95   | 3.29  | 46.15    | 2.60       | 10      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x0_5_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x0_5_infer.tar) |
| GhostNet_<br>x1_0                    | 0.7402    | 0.9165    | 12.89 | 8.66 | 6.72 | 148.78    | 5.21       | 20      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_0_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_0_infer.tar) |
| GhostNet_<br>x1_3                    | 0.7579    | 0.9254    | 19.16 | 12.25 | 9.40 | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_infer.tar) |
| GhostNet_<br>x1_3_ssld                    | 0.7938    | 0.9449    | 19.16                            | 12.25                             | 9.40                              | 236.89     | 7.38       | 29      | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GhostNet_x1_3_ssld_pretrained.pdparams)               | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/GhostNet_x1_3_ssld_infer.tar) |
| ESNet_x0_25 | 0.6248 | 0.8346 |4.12|2.97|2.51| 30.85 | 2.83 | 11 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_25_pretrained.pdparams) |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_25_infer.tar) |
| ESNet_x0_5 | 0.6882 | 0.8804 |6.45|4.42|3.35| 67.31 | 3.25 | 13 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_5_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_5_infer.tar)               |
| ESNet_x0_75 | 0.7224 | 0.9045 |9.59|6.28|4.52| 123.74 | 3.87 | 15 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x0_75_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x0_75_infer.tar)               |
| ESNet_x1_0 | 0.7392 | 0.9140 |13.67|8.71|5.97| 197.33 | 4.64 | 18 |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/ESNet_x1_0_pretrained.pdparams)               |[下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ESNet_x1_0_infer.tar)               |

<a name="PPLCNet"></a>

## PP-LCNet & PP-LCNetV2 系列 <sup>[[28](#ref28)]</sup>

PP-LCNet 系列模型的精度、速度指标如下表所示,更多关于该系列的模型介绍可以参考:[PP-LCNet 系列模型文档](../models/PP-LCNet.md)[PP-LCNetV2 系列模型文档](../models/PP-LCNetV2.md)

| 模型           | Top-1 Acc | Top-5 Acc | time(ms)<sup>*</sup><br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNet_x0_25        |0.5186           | 0.7565   | 1.74 | 18.25    | 1.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_25_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_25_infer.tar) |
| PPLCNet_x0_35        |0.5809           | 0.8083   | 1.92 | 29.46    | 1.65  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_35_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_35_infer.tar) |
| PPLCNet_x0_5         |0.6314           | 0.8466   | 2.05 | 47.28    | 1.89  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_5_infer.tar) |
| PPLCNet_x0_75        |0.6818           | 0.8830   | 2.29 | 98.82    | 2.37  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x0_75_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x0_75_infer.tar) |
| PPLCNet_x1_0         |0.7132           | 0.9003   | 2.46 | 160.81   | 2.96  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_0_infer.tar) |
| PPLCNet_x1_5         |0.7371           | 0.9153   | 3.19 | 341.86   | 4.52  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x1_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x1_5_infer.tar) |
| PPLCNet_x2_0         |0.7518           | 0.9227   | 4.27 | 590   | 6.54  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_0_infer.tar) |
| PPLCNet_x2_5         |0.7660           | 0.9300   | 5.39 | 906   | 9.04  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNet_x2_5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNet_x2_5_infer.tar) |

| 模型           | Top-1 Acc | Top-5 Acc | time(ms)<sup>**</sup><br>bs=1 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|:--:|:--:|:--:|:--:|----|----|----|:--:|
| PPLCNetV2_base  | 77.04 | 93.27 | 4.32 | 604 | 6.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/PPLCNetV2_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PPLCNetV2_base_infer.tar) |

*: 基于 Intel-Xeon-Gold-6148 硬件平台与 PaddlePaddle 推理平台。

**: 基于 Intel-Xeon-Gold-6271C 硬件平台与 OpenVINO 2021.4.2 推理平台。

<a name="ViT&DeiT"></a>

## ViT_and_DeiT 系列 <sup>[[31](#ref31)][[32](#ref32)]</sup>

ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| ViT_small_<br/>patch16_224 | 0.7769  | 0.9342   | 3.71             | 9.05             | 16.72             |   9.41   | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_224 | 0.8195   | 0.9617   | 6.12             | 14.84            | 28.51             |  16.85   | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
| ViT_base_<br/>patch16_384 | 0.8414  | 0.9717   | 14.15            | 48.38            | 95.06             |    49.35     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
| ViT_base_<br/>patch32_384 | 0.8176   | 0.9613   | 4.94             | 13.43            | 24.08             | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
| ViT_large_<br/>patch16_224 | 0.8323  | 0.9650   | 15.53            | 49.50            | 94.09             | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
|ViT_large_<br/>patch16_384| 0.8513 | 0.9736    | 39.51            | 152.46           | 304.06            | 174.70   | 304.12    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
|ViT_large_<br/>patch32_384| 0.8153 | 0.9608    | 11.44            | 36.09            | 70.63             | 44.24    | 306.48    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |

| 模型                  | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | 3.61        | 3.94            | 6.10            |   1.07   | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | 3.61 | 6.24            | 10.49           |  4.24   | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | 6.13             | 14.87            |      28.50      |    16.85     | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | 14.12            | 48.80            | 97.60 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | 3.51             | 4.05             | 6.03 | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | 3.70             | 6.20             | 10.53 | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | 6.17             | 14.94            | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | 14.12            | 48.76            | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |

<a name="SwinTransformer"></a>

## SwinTransformer 系列 <sup>[[27](#ref27)]</sup>

关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| SwinTransformer_tiny_patch4_window7_224    | 0.8069 | 0.9534 | 6.59 | 9.68 | 16.32 | 4.35  | 28.26   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
| SwinTransformer_small_patch4_window7_224   | 0.8275 | 0.9613 | 12.54 | 17.07 | 28.08 | 8.51  | 49.56   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window7_224    | 0.8300 | 0.9626 | 13.37 | 23.53 | 39.11 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384   | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup>     | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup>    | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup>    | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_22kto1k_infer.tar) |
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup>   | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_22kto1k_infer.tar) |

[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。

<a name="Twins"></a>

## Twins 系列 <sup>[[34](#ref34)]</sup>

关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| pcpvt_small | 0.8082    | 0.9552    | 7.32 | 10.51 | 15.27 |3.67    | 24.06    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
| pcpvt_base | 0.8242    | 0.9619    | 12.20 | 16.22 | 23.16 | 6.44    | 43.83    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
| pcpvt_large | 0.8273    | 0.9650    | 16.47 | 22.90 | 32.73 | 9.50    | 60.99     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
| alt_gvt_small | 0.8140    | 0.9546    | 6.94 | 9.01 | 12.27 |2.81   | 24.06   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
| alt_gvt_base | 0.8294   | 0.9621    | 9.37 | 15.02 | 24.54 | 8.34   | 56.07   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
| alt_gvt_large | 0.8331   | 0.9642    | 11.76 | 22.08 | 35.12 | 14.81   | 99.27    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |

**注**:与 Reference 的精度差异源于数据预处理不同。
S
sibo2rr 已提交
524

G
gaotingquan 已提交
525
<a name="CSWinTransformer"></a>
C
cuicheng01 已提交
526

G
gaotingquan 已提交
527
## CSWinTransformer 系列 <sup>[[40](#ref40)]</sup>
C
cuicheng01 已提交
528

529
关于 CSWinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[CSWinTransformer 系列模型文档](CSWinTransformer.md)
C
cuicheng01 已提交
530 531 532 533 534 535 536 537 538 539

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| CSWinTransformer_tiny_224    | 0.8281 | 0.9628 | - | - | - | 4.1  | 22   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_tiny_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_tiny_224_infer.tar) |
| CSWinTransformer_small_224   | 0.8358 | 0.9658 | - | - | - | 6.4 | 35  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_small_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_small_224_infer.tar) |
| CSWinTransformer_base_224    | 0.8420 | 0.9692 | - | - | - | 14.3 | 77   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_base_224_infer.tar) |
| CSWinTransformer_large_224   | 0.8643 | 0.9799 | - | - | - | 32.2 | 173.3   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_large_224_infer.tar) |
| CSWinTransformer_base_384     | 0.8550 | 0.9749 | - | - |- | 42.2 | 77   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_base_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_base_384_infer.tar) |
| CSWinTransformer_large_384    | 0.8748 | 0.9833 | - | - | - | 94.7 | 173.3 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/CSWinTransformer_large_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/CSWinTransformer_large_384_infer.tar) |

G
gaotingquan 已提交
540
<a name="PVTV2"></a>
C
cuicheng01 已提交
541

G
gaotingquan 已提交
542
## PVTV2 系列 <sup>[[41](#ref41)]</sup>
C
cuicheng01 已提交
543

544
关于 PVTV2 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[PVTV2 系列模型文档](PVTV2.md)
C
cuicheng01 已提交
545 546 547

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
G
gaotingquan 已提交
548 549 550 551 552 553 554
| PVT_V2_B0    | 0.7052 | 0.9016 | - | - | - | 0.53  | 3.7   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B0_infer.tar) |
| PVT_V2_B1   |  0.7869 | 0.9450 | - | - | - | 2.0 | 14.0  | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B1_infer.tar) |
| PVT_V2_B2    | 0.8206 | 0.9599 | - | - | - | 3.9 | 25.4   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_infer.tar) |
| PVT_V2_B2_Linear   | 0.8205 | 0.9605 | - | - | - | 3.8 | 22.6   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B2_Linear_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B2_Linear_infer.tar) |
| PVT_V2_B3     | 0.8310 | 0.9648 | - | - |- | 6.7 | 45.2   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B3_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B3_infer.tar) |
| PVT_V2_B4    | 0.8361 | 0.9666 | - | - | - | 9.8 | 62.6 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B4_infer.tar) |
| PVT_V2_B5    | 0.8374 | 0.9662 | - | - | - | 11.4 | 82.0 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/PVT_V2_B5_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/PVT_V2_B5_infer.tar) |
C
cuicheng01 已提交
555

G
gaotingquan 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
<a name="LeViT"></a>

## LeViT 系列 <sup>[[33](#ref33)]</sup>

关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| LeViT_128S | 0.7598    | 0.9269    |                  |                  |                  | 281    | 7.42     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128S_infer.tar) |
| LeViT_128 | 0.7810    | 0.9371    |                  |                  |                  | 365    | 8.87     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) |
| LeViT_192 | 0.7934    | 0.9446    |                  |                  |                  | 597    | 10.61     | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) |
| LeViT_256 | 0.8085    | 0.9497    |                  |                  |                  | 1049    | 18.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) |
| LeViT_384 | 0.8191   | 0.9551    |                  |                  |                  | 2234    | 38.45    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) |

**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。

<a name="TNT"></a>

## TNT 系列 <sup>[[35](#ref35)]</sup>

关于 TNT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[TNT 系列模型文档](../models/TNT.md)

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
| TNT_small | 0.8121   |0.9563  |                  |                  | 4.83   |  23.68    | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/TNT_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/TNT_small_infer.tar) |

**注**:TNT 模型的数据预处理部分 `NormalizeImage` 中的 `mean``std` 均为 0.5。
C
cuicheng01 已提交
583

G
gaotingquan 已提交
584
<a name="MobileViT"></a>
C
cuicheng01 已提交
585

G
gaotingquan 已提交
586
## MobileViT 系列 <sup>[[42](#ref42)]</sup>
C
cuicheng01 已提交
587

588
关于 MobileViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[MobileViT 系列模型文档](MobileViT.md)
C
cuicheng01 已提交
589 590 591

| 模型       | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址                                               | inference模型下载地址                                      |
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
C
cuicheng01 已提交
592
|  MobileViT_XXS    | 0.6867 | 0.8878 | - | - | - | 337.24  |  1.28   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XXS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XXS_infer.tar) |
C
cuicheng01 已提交
593
|  MobileViT_XS    | 0.7454 | 0.9227 | - | - | - | 930.75  |  2.33   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_XS_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_XS_infer.tar) |
C
cuicheng01 已提交
594
|  MobileViT_S    | 0.7814 | 0.9413 | - | - | - | 1849.35  |   5.59   | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileViT_S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileViT_S_infer.tar) |
C
cuicheng01 已提交
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
<a name='reference'></a>

## 参考文献

<a name="ref1">[1]</a> He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

<a name="ref2">[2]</a> He T, Zhang Z, Zhang H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 558-567.

<a name="ref3">[3]</a> Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1314-1324.

<a name="ref4">[4]</a> Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4510-4520.

<a name="ref5">[5]</a> Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.

<a name="ref6">[6]</a> Ma N, Zhang X, Zheng H T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 116-131.

<a name="ref7">[7]</a> Xie S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1492-1500.

<a name="ref8">[8]</a> Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.

<a name="ref9">[9]</a> Gao S, Cheng M M, Zhao K, et al. Res2net: A new multi-scale backbone architecture[J]. IEEE transactions on pattern analysis and machine intelligence, 2019.

<a name="ref10">[10]</a> Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.

<a name="ref11">[11]</a> Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI conference on artificial intelligence. 2017.

<a name="ref12">[12]</a> Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1251-1258.

<a name="ref13">[13]</a> Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition[J]. arXiv preprint arXiv:1908.07919, 2019.

<a name="ref14">[14]</a> Chen Y, Li J, Xiao H, et al. Dual path networks[C]//Advances in neural information processing systems. 2017: 4467-4475.

<a name="ref15">[15]</a> Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.

<a name="ref16">[16]</a> Tan M, Le Q V. Efficientnet: Rethinking model scaling for convolutional neural networks[J]. arXiv preprint arXiv:1905.11946, 2019.

<a name="ref17">[17]</a> Mahajan D, Girshick R, Ramanathan V, et al. Exploring the limits of weakly supervised pretraining[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 181-196.

<a name="ref18">[18]</a> Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural information processing systems. 2012: 1097-1105.

<a name="ref19">[19]</a> Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016.

<a name="ref20">[20]</a> Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

<a name="ref21">[21]</a> Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.

<a name="ref22">[22]</a> Ding X, Guo Y, Ding G, et al. Acnet: Strengthening the kernel skeletons for powerful cnn via asymmetric convolution blocks[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1911-1920.

<a name="ref23">[23]</a> Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1580-1589.

<a name="ref24">[24]</a> Zhang H, Wu C, Zhang Z, et al. Resnest: Split-attention networks[J]. arXiv preprint arXiv:2004.08955, 2020.

<a name="ref25">[25]</a> Radosavovic I, Kosaraju R P, Girshick R, et al. Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 10428-10436.

<a name="ref26">[26]</a> C.Szegedy, V.Vanhoucke, S.Ioffe, J.Shlens, and Z.Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.

<a name="ref27">[27]</a> Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin and Baining Guo. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows.

<a name="ref28">[28]</a>Cheng Cui, Tingquan Gao, Shengyu Wei, Yuning Du, Ruoyu Guo, Shuilong Dong, Bin Lu, Ying Zhou, Xueying Lv, Qiwen Liu, Xiaoguang Hu, Dianhai Yu, Yanjun Ma. PP-LCNet: A Lightweight CPU Convolutional Neural Network.

<a name="ref29">[29]</a>Mingxing Tan, Quoc V. Le. MixConv: Mixed Depthwise Convolutional Kernels.

<a name="ref30">[30]</a>Dongyoon Han, Sangdoo Yun, Byeongho Heo, YoungJoon Yoo. Rethinking Channel Dimensions for Efficient Model Design.

<a name="ref31">[31]</a>Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE.

<a name="ref32">[32]</a>Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Herve Jegou. Training data-efficient image transformers & distillation through attention.

<a name="ref33">[33]</a>Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Herve Jegou, Matthijs Douze. LeViT: a Vision Transformer in ConvNet’s Clothing for Faster Inference.

<a name="ref34">[34]</a>Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, Chunhua Shen. Twins: Revisiting the Design of Spatial Attention in Vision Transformers.

<a name="ref35">[35]</a>Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer.

<a name="ref36">[36]</a>Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, Jian Sun. RepVGG: Making VGG-style ConvNets Great Again.

<a name="ref37">[37]</a>Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang Huang, Youn-Long Lin. HarDNet: A Low Memory Traffic Network.

<a name="ref38">[38]</a>Fisher Yu, Dequan Wang, Evan Shelhamer, Trevor Darrell. Deep Layer Aggregation.

<a name="ref39">[39]</a>Duo Lim Jie Hu, Changhu Wang, Xiangtai Li, Qi She, Lei Zhu, Tong Zhang, Qifeng Chen. Involution: Inverting the Inherence of Convolution for Visual Recognition.
C
cuicheng01 已提交
678 679 680 681

<a name="ref40">[40]</a>Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong Chen, Baining Guo. CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows.

<a name="ref41">[41]</a>Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao. PVTv2: Improved Baselines with Pyramid Vision Transformer.
C
cuicheng01 已提交
682 683

<a name="ref42">[42]</a>Sachin Mehta, Mohammad Rastegari. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer.