inception_v4.py 14.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
WuHaobo 已提交
15
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17 18 19 20
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear, Dropout
from paddle.nn.initializer import Uniform
21 22 23 24
import math

__all__ = ["InceptionV4"]

littletomatodonkey's avatar
littletomatodonkey 已提交
25 26

class ConvBNLayer(nn.Layer):
27 28 29 30 31 32 33 34 35 36 37
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 groups=1,
                 act='relu',
                 name=None):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
littletomatodonkey 已提交
38 39 40 41
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
W
WuHaobo 已提交
42 43 44
            stride=stride,
            padding=padding,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
45
            weight_attr=ParamAttr(name=name + "_weights"),
46
            bias_attr=False)
W
WuHaobo 已提交
47
        bn_name = name + "_bn"
48 49
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
50 51 52 53 54 55
            act=act,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

56 57 58 59
    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y
W
WuHaobo 已提交
60 61


littletomatodonkey's avatar
littletomatodonkey 已提交
62
class InceptionStem(nn.Layer):
63
    def __init__(self):
W
wqz960 已提交
64
        super(InceptionStem, self).__init__()
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        self._conv_1 = ConvBNLayer(
            3, 32, 3, stride=2, act="relu", name="conv1_3x3_s2")
        self._conv_2 = ConvBNLayer(32, 32, 3, act="relu", name="conv2_3x3_s1")
        self._conv_3 = ConvBNLayer(
            32, 64, 3, padding=1, act="relu", name="conv3_3x3_s1")
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2 = ConvBNLayer(
            64, 96, 3, stride=2, act="relu", name="inception_stem1_3x3_s2")
        self._conv1_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_3x3_reduce")
        self._conv1_2 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3")
        self._conv2_1 = ConvBNLayer(
            160, 64, 1, act="relu", name="inception_stem2_1x7_reduce")
        self._conv2_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
81 82
            64, (7, 1),
            padding=(3, 0),
83
            act="relu",
W
WuHaobo 已提交
84
            name="inception_stem2_1x7")
85 86
        self._conv2_3 = ConvBNLayer(
            64,
W
WuHaobo 已提交
87 88
            64, (1, 7),
            padding=(0, 3),
89
            act="relu",
W
WuHaobo 已提交
90
            name="inception_stem2_7x1")
91 92 93 94 95 96 97 98 99 100 101 102
        self._conv2_4 = ConvBNLayer(
            64, 96, 3, act="relu", name="inception_stem2_3x3_2")
        self._conv3 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="inception_stem3_3x3_s2")

    def forward(self, inputs):
        conv = self._conv_1(inputs)
        conv = self._conv_2(conv)
        conv = self._conv_3(conv)

        pool1 = self._pool(conv)
        conv2 = self._conv2(conv)
littletomatodonkey's avatar
littletomatodonkey 已提交
103
        concat = paddle.concat([pool1, conv2], axis=1)
104 105 106 107 108 109 110 111

        conv1 = self._conv1_1(concat)
        conv1 = self._conv1_2(conv1)

        conv2 = self._conv2_1(concat)
        conv2 = self._conv2_2(conv2)
        conv2 = self._conv2_3(conv2)
        conv2 = self._conv2_4(conv2)
W
WuHaobo 已提交
112

littletomatodonkey's avatar
littletomatodonkey 已提交
113
        concat = paddle.concat([conv1, conv2], axis=1)
W
WuHaobo 已提交
114

115 116
        conv1 = self._conv3(concat)
        pool1 = self._pool(concat)
W
WuHaobo 已提交
117

littletomatodonkey's avatar
littletomatodonkey 已提交
118
        concat = paddle.concat([conv1, pool1], axis=1)
W
WuHaobo 已提交
119 120 121
        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
122
class InceptionA(nn.Layer):
123 124 125 126 127 128 129 130 131 132 133
    def __init__(self, name):
        super(InceptionA, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            384, 96, 1, act="relu", name="inception_a" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            384, 64, 1, act="relu", name="inception_a" + name + "_3x3_reduce")
        self._conv3_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
134 135 136
            96,
            3,
            padding=1,
137
            act="relu",
W
WuHaobo 已提交
138
            name="inception_a" + name + "_3x3")
139 140
        self._conv4_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
141 142
            64,
            1,
143
            act="relu",
W
WuHaobo 已提交
144
            name="inception_a" + name + "_3x3_2_reduce")
145 146
        self._conv4_2 = ConvBNLayer(
            64,
W
WuHaobo 已提交
147 148 149
            96,
            3,
            padding=1,
150
            act="relu",
W
WuHaobo 已提交
151
            name="inception_a" + name + "_3x3_2")
152 153
        self._conv4_3 = ConvBNLayer(
            96,
W
WuHaobo 已提交
154 155 156
            96,
            3,
            padding=1,
157
            act="relu",
W
WuHaobo 已提交
158 159
            name="inception_a" + name + "_3x3_3")

160 161 162
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
163

164
        conv2 = self._conv2(inputs)
W
WuHaobo 已提交
165

166 167
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
W
WuHaobo 已提交
168

169 170 171
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
W
WuHaobo 已提交
172

littletomatodonkey's avatar
littletomatodonkey 已提交
173
        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
174
        return concat
W
WuHaobo 已提交
175 176


littletomatodonkey's avatar
littletomatodonkey 已提交
177
class ReductionA(nn.Layer):
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def __init__(self):
        super(ReductionA, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2 = ConvBNLayer(
            384, 384, 3, stride=2, act="relu", name="reduction_a_3x3")
        self._conv3_1 = ConvBNLayer(
            384, 192, 1, act="relu", name="reduction_a_3x3_2_reduce")
        self._conv3_2 = ConvBNLayer(
            192, 224, 3, padding=1, act="relu", name="reduction_a_3x3_2")
        self._conv3_3 = ConvBNLayer(
            224, 256, 3, stride=2, act="relu", name="reduction_a_3x3_3")

    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv2 = self._conv2(inputs)
        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
littletomatodonkey's avatar
littletomatodonkey 已提交
196
        concat = paddle.concat([pool1, conv2, conv3], axis=1)
W
WuHaobo 已提交
197 198 199
        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
200
class InceptionB(nn.Layer):
201 202 203 204 205 206 207 208 209
    def __init__(self, name=None):
        super(InceptionB, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            1024, 128, 1, act="relu", name="inception_b" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1024, 384, 1, act="relu", name="inception_b" + name + "_1x1_2")
        self._conv3_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
210 211
            192,
            1,
212
            act="relu",
W
WuHaobo 已提交
213
            name="inception_b" + name + "_1x7_reduce")
214 215
        self._conv3_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
216 217
            224, (1, 7),
            padding=(0, 3),
218
            act="relu",
W
WuHaobo 已提交
219
            name="inception_b" + name + "_1x7")
220 221
        self._conv3_3 = ConvBNLayer(
            224,
W
WuHaobo 已提交
222 223
            256, (7, 1),
            padding=(3, 0),
224
            act="relu",
W
WuHaobo 已提交
225
            name="inception_b" + name + "_7x1")
226 227
        self._conv4_1 = ConvBNLayer(
            1024,
W
WuHaobo 已提交
228 229
            192,
            1,
230
            act="relu",
W
WuHaobo 已提交
231
            name="inception_b" + name + "_7x1_2_reduce")
232 233
        self._conv4_2 = ConvBNLayer(
            192,
W
WuHaobo 已提交
234 235
            192, (1, 7),
            padding=(0, 3),
236
            act="relu",
W
WuHaobo 已提交
237
            name="inception_b" + name + "_1x7_2")
238 239
        self._conv4_3 = ConvBNLayer(
            192,
W
WuHaobo 已提交
240 241
            224, (7, 1),
            padding=(3, 0),
242
            act="relu",
W
WuHaobo 已提交
243
            name="inception_b" + name + "_7x1_2")
244 245
        self._conv4_4 = ConvBNLayer(
            224,
W
WuHaobo 已提交
246 247
            224, (1, 7),
            padding=(0, 3),
248
            act="relu",
W
WuHaobo 已提交
249
            name="inception_b" + name + "_1x7_3")
250 251
        self._conv4_5 = ConvBNLayer(
            224,
W
WuHaobo 已提交
252 253
            256, (7, 1),
            padding=(3, 0),
254
            act="relu",
W
WuHaobo 已提交
255 256
            name="inception_b" + name + "_7x1_3")

257 258 259
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)
W
WuHaobo 已提交
260

261 262 263 264 265
        conv2 = self._conv2(inputs)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
W
WuHaobo 已提交
266

267 268 269 270 271
        conv4 = self._conv4_1(inputs)
        conv4 = self._conv4_2(conv4)
        conv4 = self._conv4_3(conv4)
        conv4 = self._conv4_4(conv4)
        conv4 = self._conv4_5(conv4)
W
WuHaobo 已提交
272

littletomatodonkey's avatar
littletomatodonkey 已提交
273
        concat = paddle.concat([conv1, conv2, conv3, conv4], axis=1)
274
        return concat
W
WuHaobo 已提交
275

276

littletomatodonkey's avatar
littletomatodonkey 已提交
277
class ReductionB(nn.Layer):
278 279 280 281 282 283 284 285 286 287 288
    def __init__(self):
        super(ReductionB, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv2_1 = ConvBNLayer(
            1024, 192, 1, act="relu", name="reduction_b_3x3_reduce")
        self._conv2_2 = ConvBNLayer(
            192, 192, 3, stride=2, act="relu", name="reduction_b_3x3")
        self._conv3_1 = ConvBNLayer(
            1024, 256, 1, act="relu", name="reduction_b_1x7_reduce")
        self._conv3_2 = ConvBNLayer(
            256,
W
WuHaobo 已提交
289 290
            256, (1, 7),
            padding=(0, 3),
291
            act="relu",
W
WuHaobo 已提交
292
            name="reduction_b_1x7")
293 294
        self._conv3_3 = ConvBNLayer(
            256,
W
WuHaobo 已提交
295 296
            320, (7, 1),
            padding=(3, 0),
297
            act="relu",
W
WuHaobo 已提交
298
            name="reduction_b_7x1")
299 300 301 302 303 304 305 306 307 308 309 310 311
        self._conv3_4 = ConvBNLayer(
            320, 320, 3, stride=2, act="relu", name="reduction_b_3x3_2")

    def forward(self, inputs):
        pool1 = self._pool(inputs)

        conv2 = self._conv2_1(inputs)
        conv2 = self._conv2_2(conv2)

        conv3 = self._conv3_1(inputs)
        conv3 = self._conv3_2(conv3)
        conv3 = self._conv3_3(conv3)
        conv3 = self._conv3_4(conv3)
W
WuHaobo 已提交
312

littletomatodonkey's avatar
littletomatodonkey 已提交
313
        concat = paddle.concat([pool1, conv2, conv3], axis=1)
W
WuHaobo 已提交
314 315 316 317

        return concat


littletomatodonkey's avatar
littletomatodonkey 已提交
318
class InceptionC(nn.Layer):
319 320 321 322 323 324 325 326 327 328 329
    def __init__(self, name=None):
        super(InceptionC, self).__init__()
        self._pool = Pool2D(pool_size=3, pool_type="avg", pool_padding=1)
        self._conv1 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1")
        self._conv2 = ConvBNLayer(
            1536, 256, 1, act="relu", name="inception_c" + name + "_1x1_2")
        self._conv3_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_3")
        self._conv3_1 = ConvBNLayer(
            384,
W
WuHaobo 已提交
330 331
            256, (1, 3),
            padding=(0, 1),
332
            act="relu",
W
WuHaobo 已提交
333
            name="inception_c" + name + "_1x3")
334 335
        self._conv3_2 = ConvBNLayer(
            384,
W
WuHaobo 已提交
336 337
            256, (3, 1),
            padding=(1, 0),
338
            act="relu",
W
WuHaobo 已提交
339
            name="inception_c" + name + "_3x1")
340 341 342 343
        self._conv4_0 = ConvBNLayer(
            1536, 384, 1, act="relu", name="inception_c" + name + "_1x1_4")
        self._conv4_00 = ConvBNLayer(
            384,
W
WuHaobo 已提交
344 345
            448, (1, 3),
            padding=(0, 1),
346
            act="relu",
W
WuHaobo 已提交
347
            name="inception_c" + name + "_1x3_2")
348 349
        self._conv4_000 = ConvBNLayer(
            448,
W
WuHaobo 已提交
350 351
            512, (3, 1),
            padding=(1, 0),
352
            act="relu",
W
WuHaobo 已提交
353
            name="inception_c" + name + "_3x1_2")
354 355
        self._conv4_1 = ConvBNLayer(
            512,
W
WuHaobo 已提交
356 357
            256, (1, 3),
            padding=(0, 1),
358
            act="relu",
W
WuHaobo 已提交
359
            name="inception_c" + name + "_1x3_3")
360 361
        self._conv4_2 = ConvBNLayer(
            512,
W
WuHaobo 已提交
362 363
            256, (3, 1),
            padding=(1, 0),
364
            act="relu",
W
WuHaobo 已提交
365 366
            name="inception_c" + name + "_3x1_3")

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def forward(self, inputs):
        pool1 = self._pool(inputs)
        conv1 = self._conv1(pool1)

        conv2 = self._conv2(inputs)

        conv3 = self._conv3_0(inputs)
        conv3_1 = self._conv3_1(conv3)
        conv3_2 = self._conv3_2(conv3)

        conv4 = self._conv4_0(inputs)
        conv4 = self._conv4_00(conv4)
        conv4 = self._conv4_000(conv4)
        conv4_1 = self._conv4_1(conv4)
        conv4_2 = self._conv4_2(conv4)

littletomatodonkey's avatar
littletomatodonkey 已提交
383
        concat = paddle.concat(
W
WuHaobo 已提交
384 385 386
            [conv1, conv2, conv3_1, conv3_2, conv4_1, conv4_2], axis=1)

        return concat
387 388


littletomatodonkey's avatar
littletomatodonkey 已提交
389
class InceptionV4DY(nn.Layer):
390
    def __init__(self, class_dim=1000):
W
fix  
wqz960 已提交
391
        super(InceptionV4DY, self).__init__()
W
wqz960 已提交
392
        self._inception_stem = InceptionStem()
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

        self._inceptionA_1 = InceptionA(name="1")
        self._inceptionA_2 = InceptionA(name="2")
        self._inceptionA_3 = InceptionA(name="3")
        self._inceptionA_4 = InceptionA(name="4")
        self._reductionA = ReductionA()

        self._inceptionB_1 = InceptionB(name="1")
        self._inceptionB_2 = InceptionB(name="2")
        self._inceptionB_3 = InceptionB(name="3")
        self._inceptionB_4 = InceptionB(name="4")
        self._inceptionB_5 = InceptionB(name="5")
        self._inceptionB_6 = InceptionB(name="6")
        self._inceptionB_7 = InceptionB(name="7")
        self._reductionB = ReductionB()

        self._inceptionC_1 = InceptionC(name="1")
        self._inceptionC_2 = InceptionC(name="2")
        self._inceptionC_3 = InceptionC(name="3")

        self.avg_pool = Pool2D(pool_type='avg', global_pooling=True)
        self._drop = Dropout(p=0.2)
        stdv = 1.0 / math.sqrt(1536 * 1.0)
        self.out = Linear(
            1536,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
419 420
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="final_fc_weights"),
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            bias_attr=ParamAttr(name="final_fc_offset"))

    def forward(self, inputs):
        x = self._inception_stem(inputs)

        x = self._inceptionA_1(x)
        x = self._inceptionA_2(x)
        x = self._inceptionA_3(x)
        x = self._inceptionA_4(x)
        x = self._reductionA(x)

        x = self._inceptionB_1(x)
        x = self._inceptionB_2(x)
        x = self._inceptionB_3(x)
        x = self._inceptionB_4(x)
        x = self._inceptionB_5(x)
        x = self._inceptionB_6(x)
        x = self._inceptionB_7(x)
        x = self._reductionB(x)

        x = self._inceptionC_1(x)
        x = self._inceptionC_2(x)
        x = self._inceptionC_3(x)

        x = self.avg_pool(x)
littletomatodonkey's avatar
littletomatodonkey 已提交
446
        x = paddle.squeeze(x, axis=[2, 3])
447 448 449 450 451
        x = self._drop(x)
        x = self.out(x)
        return x


W
wqz960 已提交
452 453
def InceptionV4(**args):
    model = InceptionV4DY(**args)
littletomatodonkey's avatar
littletomatodonkey 已提交
454
    return model