hrnet.py 22.8 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear
from paddle.nn.initializer import Uniform
26 27

import math
W
WuHaobo 已提交
28 29

__all__ = [
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    "HRNet_W18_C",
    "HRNet_W30_C",
    "HRNet_W32_C",
    "HRNet_W40_C",
    "HRNet_W44_C",
    "HRNet_W48_C",
    "HRNet_W60_C",
    "HRNet_W64_C",
    "SE_HRNet_W18_C",
    "SE_HRNet_W30_C",
    "SE_HRNet_W32_C",
    "SE_HRNet_W40_C",
    "SE_HRNet_W44_C",
    "SE_HRNet_W48_C",
    "SE_HRNet_W60_C",
    "SE_HRNet_W64_C",
W
WuHaobo 已提交
46 47 48
]


littletomatodonkey's avatar
littletomatodonkey 已提交
49
class ConvBNLayer(nn.Layer):
50 51 52 53 54 55 56 57 58
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()
W
WuHaobo 已提交
59

littletomatodonkey's avatar
littletomatodonkey 已提交
60 61 62 63
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
64 65 66
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
67
            weight_attr=ParamAttr(name=name + "_weights"),
68 69 70 71 72 73 74 75 76
            bias_attr=False)
        bn_name = name + '_bn'
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
W
WuHaobo 已提交
77

78 79 80 81 82 83
    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
84
class Layer1(nn.Layer):
85 86 87 88
    def __init__(self, num_channels, has_se=False, name=None):
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []
W
WuHaobo 已提交
89 90

        for i in range(4):
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            bottleneck_block = self.add_sublayer(
                "bb_{}_{}".format(name, i + 1),
                BottleneckBlock(
                    num_channels=num_channels if i == 0 else 256,
                    num_filters=64,
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

    def forward(self, input):
        conv = input
        for block_func in self.bottleneck_block_list:
            conv = block_func(conv)
W
WuHaobo 已提交
106 107
        return conv

108

littletomatodonkey's avatar
littletomatodonkey 已提交
109
class TransitionLayer(nn.Layer):
110 111 112
    def __init__(self, in_channels, out_channels, name=None):
        super(TransitionLayer, self).__init__()

W
WuHaobo 已提交
113 114 115
        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
116
        self.conv_bn_func_list = []
W
WuHaobo 已提交
117
        for i in range(num_out):
118
            residual = None
W
WuHaobo 已提交
119 120
            if i < num_in:
                if in_channels[i] != out_channels[i]:
121 122 123 124 125 126 127 128 129 130 131 132
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvBNLayer(
                            num_channels=in_channels[i],
                            num_filters=out_channels[i],
                            filter_size=3,
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvBNLayer(
                        num_channels=in_channels[-1],
W
WuHaobo 已提交
133
                        num_filters=out_channels[i],
134 135 136 137 138 139 140 141 142 143
                        filter_size=3,
                        stride=2,
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

    def forward(self, input):
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
                outs.append(input[idx])
W
WuHaobo 已提交
144
            else:
145 146 147 148 149
                if idx < len(input):
                    outs.append(conv_bn_func(input[idx]))
                else:
                    outs.append(conv_bn_func(input[-1]))
        return outs
W
WuHaobo 已提交
150 151


littletomatodonkey's avatar
littletomatodonkey 已提交
152
class Branches(nn.Layer):
153 154 155 156 157 158 159
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
                 name=None):
        super(Branches, self).__init__()
W
WuHaobo 已提交
160

161
        self.basic_block_list = []
W
WuHaobo 已提交
162

163 164 165 166 167 168 169 170 171 172 173 174 175
        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)
W
WuHaobo 已提交
176

177 178 179 180 181 182 183 184
    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            conv = input
            for basic_block_func in self.basic_block_list[idx]:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs
W
WuHaobo 已提交
185 186


littletomatodonkey's avatar
littletomatodonkey 已提交
187
class BottleneckBlock(nn.Layer):
188 189 190 191 192 193 194 195
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
W
WuHaobo 已提交
196

197 198
        self.has_se = has_se
        self.downsample = downsample
W
WuHaobo 已提交
199

200 201
        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
202
            num_filters=num_filters,
203 204 205 206 207
            filter_size=1,
            act="relu",
            name=name + "_conv1", )
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
208
            num_filters=num_filters,
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
            filter_size=3,
            stride=stride,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
224
                filter_size=1,
225 226 227
                act=None,
                name=name + "_downsample")

W
WuHaobo 已提交
228
        if self.has_se:
229 230 231
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
W
WuHaobo 已提交
232
                reduction_ratio=16,
233 234 235
                name='fc' + name)

    def forward(self, input):
W
WuHaobo 已提交
236
        residual = input
237 238 239 240 241 242 243 244 245 246
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv3 = self.se(conv3)

littletomatodonkey's avatar
littletomatodonkey 已提交
247
        y = paddle.elementwise_add(x=conv3, y=residual, act="relu")
248 249 250
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
251
class BasicBlock(nn.Layer):
252 253 254 255 256 257 258 259 260 261 262 263 264 265
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
266 267 268
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
269 270 271 272 273 274 275 276 277 278 279 280 281
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvBNLayer(
                num_channels=num_channels,
W
WuHaobo 已提交
282
                num_filters=num_filters * 4,
283 284 285 286
                filter_size=1,
                act="relu",
                name=name + "_downsample")

W
WuHaobo 已提交
287
        if self.has_se:
288 289 290
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
W
WuHaobo 已提交
291
                reduction_ratio=16,
292 293 294 295 296 297 298 299 300 301 302 303 304
                name='fc' + name)

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

littletomatodonkey's avatar
littletomatodonkey 已提交
305
        y = paddle.elementwise_add(x=conv2, y=residual, act="relu")
306 307 308
        return y


littletomatodonkey's avatar
littletomatodonkey 已提交
309
class SELayer(nn.Layer):
310 311 312 313 314 315 316 317 318 319 320 321 322 323
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = Pool2D(pool_type='avg', global_pooling=True)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
            act="relu",
            param_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
324
                initializer=Uniform(-stdv, stdv), name=name + "_sqz_weights"),
W
WuHaobo 已提交
325
            bias_attr=ParamAttr(name=name + '_sqz_offset'))
326 327 328 329 330 331 332

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
            act="sigmoid",
            param_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
333
                initializer=Uniform(-stdv, stdv), name=name + "_exc_weights"),
W
WuHaobo 已提交
334
            bias_attr=ParamAttr(name=name + '_exc_offset'))
335 336 337

    def forward(self, input):
        pool = self.pool2d_gap(input)
littletomatodonkey's avatar
littletomatodonkey 已提交
338
        pool = paddle.reshape(pool, shape=[-1, self._num_channels])
339 340
        squeeze = self.squeeze(pool)
        excitation = self.excitation(squeeze)
littletomatodonkey's avatar
littletomatodonkey 已提交
341
        excitation = paddle.reshape(
342 343 344 345 346
            excitation, shape=[-1, self._num_channels, 1, 1])
        out = input * excitation
        return out


littletomatodonkey's avatar
littletomatodonkey 已提交
347
class Stage(nn.Layer):
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules

        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

    def forward(self, input):
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


littletomatodonkey's avatar
littletomatodonkey 已提交
388
class HighResolutionModule(nn.Layer):
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
                 name=None):
        super(HighResolutionModule, self).__init__()

        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
            name=name)

    def forward(self, input):
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


littletomatodonkey's avatar
littletomatodonkey 已提交
416
class FuseLayers(nn.Layer):
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvBNLayer(
                            num_channels=in_channels[j],
                            num_filters=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[i],
                                    filter_size=3,
                                    stride=2,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvBNLayer(
                                    num_channels=pre_num_filters,
                                    num_filters=out_channels[j],
                                    filter_size=3,
                                    stride=2,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

    def forward(self, input):
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1

littletomatodonkey's avatar
littletomatodonkey 已提交
484 485
                    y = F.resize_nearest(input=y, scale=2**(j - i))
                    residual = paddle.elementwise_add(
486 487 488 489 490 491 492
                        x=residual, y=y, act=None)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

littletomatodonkey's avatar
littletomatodonkey 已提交
493
                    residual = paddle.elementwise_add(
494 495
                        x=residual, y=y, act=None)

littletomatodonkey's avatar
littletomatodonkey 已提交
496
            residual = F.relu(residual)
497 498 499 500 501
            outs.append(residual)

        return outs


littletomatodonkey's avatar
littletomatodonkey 已提交
502
class LastClsOut(nn.Layer):
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    def __init__(self,
                 num_channel_list,
                 has_se,
                 num_filters_list=[32, 64, 128, 256],
                 name=None):
        super(LastClsOut, self).__init__()

        self.func_list = []
        for idx in range(len(num_channel_list)):
            func = self.add_sublayer(
                "conv_{}_conv_{}".format(name, idx + 1),
                BottleneckBlock(
                    num_channels=num_channel_list[idx],
                    num_filters=num_filters_list[idx],
                    has_se=has_se,
                    downsample=True,
                    name=name + 'conv_' + str(idx + 1)))
            self.func_list.append(func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            out = self.func_list[idx](input)
            outs.append(out)
        return outs


littletomatodonkey's avatar
littletomatodonkey 已提交
530
class HRNet(nn.Layer):
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    def __init__(self, width=18, has_se=False, class_dim=1000):
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }
        self._class_dim = class_dim

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3

        self.conv_layer1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvBNLayer(
            num_channels=64,
            num_filters=64,
            filter_size=3,
            stride=2,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(num_channels=64, has_se=has_se, name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[256], out_channels=channels_2, name="tr1")

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=channels_2, out_channels=channels_3, name="tr2")
        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=channels_3, out_channels=channels_4, name="tr3")
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
            name="st4")

        # classification
        num_filters_list = [32, 64, 128, 256]
        self.last_cls = LastClsOut(
            num_channel_list=channels_4,
            has_se=self.has_se,
            num_filters_list=num_filters_list,
            name="cls_head", )

        last_num_filters = [256, 512, 1024]
        self.cls_head_conv_list = []
        for idx in range(3):
            self.cls_head_conv_list.append(
                self.add_sublayer(
                    "cls_head_add{}".format(idx + 1),
                    ConvBNLayer(
                        num_channels=num_filters_list[idx] * 4,
                        num_filters=last_num_filters[idx],
                        filter_size=3,
                        stride=2,
                        name="cls_head_add" + str(idx + 1))))

        self.conv_last = ConvBNLayer(
            num_channels=1024,
            num_filters=2048,
            filter_size=1,
            stride=1,
            name="cls_head_last_conv")

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        self.out = Linear(
            2048,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
632 633
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, input):
        conv1 = self.conv_layer1_1(input)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)

        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)

        tr2 = self.tr2(st2)
        st3 = self.st3(tr2)

        tr3 = self.tr3(st3)
        st4 = self.st4(tr3)

        last_cls = self.last_cls(st4)

        y = last_cls[0]
        for idx in range(3):
            y = last_cls[idx + 1] + self.cls_head_conv_list[idx](y)

        y = self.conv_last(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
659
        y = paddle.reshape(y, shape=[0, -1])
660 661
        y = self.out(y)
        return y
W
WuHaobo 已提交
662 663


littletomatodonkey's avatar
littletomatodonkey 已提交
664 665
def HRNet_W18_C(**args):
    model = HRNet(width=18, **args)
W
WuHaobo 已提交
666 667 668
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
669 670
def HRNet_W30_C(**args):
    model = HRNet(width=30, **args)
W
WuHaobo 已提交
671 672 673
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
674 675
def HRNet_W32_C(**args):
    model = HRNet(width=32, **args)
W
WuHaobo 已提交
676 677 678
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
679 680
def HRNet_W40_C(**args):
    model = HRNet(width=40, **args)
W
WuHaobo 已提交
681 682 683
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
684 685
def HRNet_W44_C(**args):
    model = HRNet(width=44, **args)
W
WuHaobo 已提交
686 687 688
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
689 690
def HRNet_W48_C(**args):
    model = HRNet(width=48, **args)
W
WuHaobo 已提交
691 692 693
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
694 695
def HRNet_W60_C(**args):
    model = HRNet(width=60, **args)
W
WuHaobo 已提交
696 697 698
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
699 700
def HRNet_W64_C(**args):
    model = HRNet(width=64, **args)
W
WuHaobo 已提交
701 702 703
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
704 705
def SE_HRNet_W18_C(**args):
    model = HRNet(width=18, has_se=True, **args)
W
WuHaobo 已提交
706 707 708
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
709 710
def SE_HRNet_W30_C(**args):
    model = HRNet(width=30, has_se=True, **args)
W
WuHaobo 已提交
711 712 713
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
714 715
def SE_HRNet_W32_C(**args):
    model = HRNet(width=32, has_se=True, **args)
W
WuHaobo 已提交
716 717 718
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
719 720
def SE_HRNet_W40_C(**args):
    model = HRNet(width=40, has_se=True, **args)
W
WuHaobo 已提交
721 722 723
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
724 725
def SE_HRNet_W44_C(**args):
    model = HRNet(width=44, has_se=True, **args)
W
WuHaobo 已提交
726 727 728
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
729 730
def SE_HRNet_W48_C(**args):
    model = HRNet(width=48, has_se=True, **args)
W
WuHaobo 已提交
731 732 733
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
734 735
def SE_HRNet_W60_C(**args):
    model = HRNet(width=60, has_se=True, **args)
W
WuHaobo 已提交
736 737 738
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
739 740
def SE_HRNet_W64_C(**args):
    model = HRNet(width=64, has_se=True, **args)
W
WuHaobo 已提交
741
    return model