resnet_vd.py 11.1 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20
import paddle
littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from paddle import ParamAttr
import paddle.nn as nn
23 24 25
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
littletomatodonkey's avatar
littletomatodonkey 已提交
26
from paddle.nn.initializer import Uniform
27 28

import math
W
WuHaobo 已提交
29 30

__all__ = [
31
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
32 33 34
]


littletomatodonkey's avatar
littletomatodonkey 已提交
35
class ConvBNLayer(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
36 37 38 39 40 41 42 43 44 45
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 is_vd_mode=False,
                 act=None,
                 lr_mult=1.0,
                 name=None):
46 47
        super(ConvBNLayer, self).__init__()
        self.is_vd_mode = is_vd_mode
48
        self._pool2d_avg = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
49
            kernel_size=2, stride=2, padding=0, ceil_mode=True)
50
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
51 52 53
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
54
            stride=stride,
W
WuHaobo 已提交
55 56
            padding=(filter_size - 1) // 2,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
57 58
            weight_attr=ParamAttr(
                name=name + "_weights", learning_rate=lr_mult),
W
WuHaobo 已提交
59 60 61 62 63
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
64 65
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
66
            act=act,
L
littletomatodonkey 已提交
67 68 69 70
            param_attr=ParamAttr(
                name=bn_name + '_scale', learning_rate=lr_mult),
            bias_attr=ParamAttr(
                bn_name + '_offset', learning_rate=lr_mult),
71 72 73 74 75 76 77 78 79 80
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
81

littletomatodonkey's avatar
littletomatodonkey 已提交
82
class BottleneckBlock(nn.Layer):
83 84 85 86 87 88
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
89
                 lr_mult=1.0,
90 91 92 93 94
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
95 96 97
            num_filters=num_filters,
            filter_size=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
98
            lr_mult=lr_mult,
W
WuHaobo 已提交
99
            name=name + "_branch2a")
100 101
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
102 103 104 105
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
106
            lr_mult=lr_mult,
W
WuHaobo 已提交
107
            name=name + "_branch2b")
108 109
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
110 111 112
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
littletomatodonkey's avatar
littletomatodonkey 已提交
113
            lr_mult=lr_mult,
W
WuHaobo 已提交
114 115
            name=name + "_branch2c")

116 117 118 119 120 121 122
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
L
littletomatodonkey 已提交
123
                lr_mult=lr_mult,
124 125 126 127 128 129 130 131
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
132

133 134 135 136
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
137 138
        y = paddle.add(x=short, y=conv2)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
139
        return y
W
WuHaobo 已提交
140

141

littletomatodonkey's avatar
littletomatodonkey 已提交
142
class BasicBlock(nn.Layer):
143 144 145 146 147 148
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
littletomatodonkey's avatar
littletomatodonkey 已提交
149
                 lr_mult=1.0,
150
                 name=None):
littletomatodonkey's avatar
littletomatodonkey 已提交
151
        super(BasicBlock, self).__init__()
152 153 154
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
155 156 157
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
158
            act='relu',
L
littletomatodonkey 已提交
159
            lr_mult=lr_mult,
W
WuHaobo 已提交
160
            name=name + "_branch2a")
161 162
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
163 164 165
            num_filters=num_filters,
            filter_size=3,
            act=None,
L
littletomatodonkey 已提交
166
            lr_mult=lr_mult,
W
WuHaobo 已提交
167 168
            name=name + "_branch2b")

169 170 171 172 173 174 175
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
L
littletomatodonkey 已提交
176
                lr_mult=lr_mult,
177 178 179 180 181 182 183 184 185 186 187 188
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
189 190
        y = paddle.add(x=short, y=conv1)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
191
        return y
192 193


littletomatodonkey's avatar
littletomatodonkey 已提交
194
class ResNet_vd(nn.Layer):
littletomatodonkey's avatar
littletomatodonkey 已提交
195 196 197 198
    def __init__(self,
                 layers=50,
                 class_dim=1000,
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
199 200 201 202 203 204 205 206
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

littletomatodonkey's avatar
littletomatodonkey 已提交
207 208 209 210 211 212 213 214 215 216
        self.lr_mult_list = lr_mult_list
        assert isinstance(self.lr_mult_list, (
            list, tuple
        )), "lr_mult_list should be in (list, tuple) but got {}".format(
            type(self.lr_mult_list))
        assert len(
            self.lr_mult_list
        ) == 5, "lr_mult_list length should should be 5 but got {}".format(
            len(self.lr_mult_list))

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
237
            lr_mult=self.lr_mult_list[0],
238 239 240 241 242 243 244
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
245
            lr_mult=self.lr_mult_list[0],
246 247 248 249 250 251 252
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
littletomatodonkey's avatar
littletomatodonkey 已提交
253
            lr_mult=self.lr_mult_list[0],
254
            name="conv1_3")
255
        self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
W
WuHaobo 已提交
256

257 258 259 260 261
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
262
                    if layers in [101, 152, 200] and block == 2:
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
littletomatodonkey's avatar
littletomatodonkey 已提交
278
                            lr_mult=self.lr_mult_list[block + 1],
279 280 281 282 283 284 285 286
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
littletomatodonkey's avatar
littletomatodonkey 已提交
287
                    basic_block = self.add_sublayer(
288
                        'bb_%d_%d' % (block, i),
littletomatodonkey's avatar
littletomatodonkey 已提交
289
                        BasicBlock(
290 291 292 293 294 295
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
littletomatodonkey's avatar
littletomatodonkey 已提交
296
                            name=conv_name,
297
                            lr_mult=self.lr_mult_list[block + 1]))
littletomatodonkey's avatar
littletomatodonkey 已提交
298
                    self.block_list.append(basic_block)
299 300
                    shortcut = True

301
        self.pool2d_avg = AdaptiveAvgPool2D(1)
302 303 304 305 306 307 308 309

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
310 311
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_0.w_0"),
312 313 314 315 316 317 318 319 320 321
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
322
        y = paddle.reshape(y, shape=[-1, self.pool2d_avg_channels])
323 324 325 326 327 328
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
329 330 331
    return model


332 333
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
334 335 336
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
337
def ResNet50_vd(**args):
338
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
339 340 341
    return model


342 343
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
344 345 346
    return model


347 348
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
349 350 351
    return model


352 353
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
354
    return model