resnest.py 21.7 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
import math
import paddle.nn as nn
23
import paddle.nn.functional as F
littletomatodonkey's avatar
littletomatodonkey 已提交
24
from paddle import ParamAttr
25 26 27 28
from paddle.nn.initializer import KaimingNormal
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
littletomatodonkey's avatar
littletomatodonkey 已提交
29

L
littletomatodonkey 已提交
30
__all__ = ["ResNeSt50_fast_1s1x64d", "ResNeSt50", "ResNeSt101"]
littletomatodonkey's avatar
littletomatodonkey 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 dilation=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

        bn_decay = 0.0

47
        self._conv = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
48 49 50
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
littletomatodonkey's avatar
littletomatodonkey 已提交
51 52 53 54
            stride=stride,
            padding=(filter_size - 1) // 2,
            dilation=dilation,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
55
            weight_attr=ParamAttr(name=name + "_weight"),
littletomatodonkey's avatar
littletomatodonkey 已提交
56 57 58 59 60
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
61
                name=name + "_scale", regularizer=L2Decay(bn_decay)),
littletomatodonkey's avatar
littletomatodonkey 已提交
62
            bias_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
63
                name + "_offset", regularizer=L2Decay(bn_decay)),
littletomatodonkey's avatar
littletomatodonkey 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            moving_mean_name=name + "_mean",
            moving_variance_name=name + "_variance")

    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        return x


class rSoftmax(nn.Layer):
    def __init__(self, radix, cardinality):
        super(rSoftmax, self).__init__()
        self.radix = radix
        self.cardinality = cardinality

    def forward(self, x):
        cardinality = self.cardinality
        radix = self.radix

        batch, r, h, w = x.shape
        if self.radix > 1:
            x = paddle.reshape(
                x=x,
                shape=[
L
littletomatodonkey 已提交
88 89
                    batch, cardinality, radix,
                    int(r * h * w / cardinality / radix)
littletomatodonkey's avatar
littletomatodonkey 已提交
90 91 92
                ])
            x = paddle.transpose(x=x, perm=[0, 2, 1, 3])
            x = nn.functional.softmax(x, axis=1)
L
littletomatodonkey 已提交
93
            x = paddle.reshape(x=x, shape=[batch, r * h * w, 1, 1])
littletomatodonkey's avatar
littletomatodonkey 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        else:
            x = nn.functional.sigmoid(x)
        return x


class SplatConv(nn.Layer):
    def __init__(self,
                 in_channels,
                 channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True,
                 radix=2,
                 reduction_factor=4,
                 rectify_avg=False,
                 name=None):
        super(SplatConv, self).__init__()

        self.radix = radix

        self.conv1 = ConvBNLayer(
            num_channels=in_channels,
            num_filters=channels * radix,
            filter_size=kernel_size,
            stride=stride,
            groups=groups * radix,
            act="relu",
L
littletomatodonkey 已提交
124
            name=name + "_1_weights")
littletomatodonkey's avatar
littletomatodonkey 已提交
125

126
        self.avg_pool2d = AdaptiveAvgPool2D(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
127 128 129 130 131 132 133 134 135 136 137

        inter_channels = int(max(in_channels * radix // reduction_factor, 32))

        # to calc gap
        self.conv2 = ConvBNLayer(
            num_channels=channels,
            num_filters=inter_channels,
            filter_size=1,
            stride=1,
            groups=groups,
            act="relu",
L
littletomatodonkey 已提交
138
            name=name + "_2_weights")
littletomatodonkey's avatar
littletomatodonkey 已提交
139 140

        # to calc atten
141
        self.conv3 = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
142 143 144
            in_channels=inter_channels,
            out_channels=channels * radix,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
145 146 147
            stride=1,
            padding=0,
            groups=groups,
littletomatodonkey's avatar
littletomatodonkey 已提交
148
            weight_attr=ParamAttr(
L
littletomatodonkey 已提交
149
                name=name + "_weights", initializer=KaimingNormal()),
littletomatodonkey's avatar
littletomatodonkey 已提交
150 151 152 153 154 155 156 157 158
            bias_attr=False)

        self.rsoftmax = rSoftmax(radix=radix, cardinality=groups)

    def forward(self, x):
        x = self.conv1(x)

        if self.radix > 1:
            splited = paddle.split(x, num_or_sections=self.radix, axis=1)
159
            gap = paddle.add_n(splited)
littletomatodonkey's avatar
littletomatodonkey 已提交
160 161 162 163 164 165 166 167 168 169 170
        else:
            gap = x

        gap = self.avg_pool2d(gap)
        gap = self.conv2(gap)

        atten = self.conv3(gap)
        atten = self.rsoftmax(atten)

        if self.radix > 1:
            attens = paddle.split(atten, num_or_sections=self.radix, axis=1)
L
littletomatodonkey 已提交
171 172 173 174
            y = paddle.add_n([
                paddle.multiply(split, att)
                for (att, split) in zip(attens, splited)
            ])
littletomatodonkey's avatar
littletomatodonkey 已提交
175
        else:
L
littletomatodonkey 已提交
176
            y = paddle.multiply(x, atten)
littletomatodonkey's avatar
littletomatodonkey 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

        return y


class BottleneckBlock(nn.Layer):
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 radix=1,
                 cardinality=1,
                 bottleneck_width=64,
                 avd=False,
                 avd_first=False,
                 dilation=1,
                 is_first=False,
                 rectify_avg=False,
                 last_gamma=False,
                 avg_down=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.radix = radix
        self.cardinality = cardinality
        self.avd = avd
        self.avd_first = avd_first
        self.dilation = dilation
        self.is_first = is_first
        self.rectify_avg = rectify_avg
        self.last_gamma = last_gamma
        self.avg_down = avg_down

        group_width = int(planes * (bottleneck_width / 64.)) * cardinality

        self.conv1 = ConvBNLayer(
            num_channels=self.inplanes,
            num_filters=group_width,
            filter_size=1,
            stride=1,
            groups=1,
            act="relu",
            name=name + "_conv1")

        if avd and avd_first and (stride > 1 or is_first):
223
            self.avg_pool2d_1 = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
224
                kernel_size=3, stride=stride, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237

        if radix >= 1:
            self.conv2 = SplatConv(
                in_channels=group_width,
                channels=group_width,
                kernel_size=3,
                stride=1,
                padding=dilation,
                dilation=dilation,
                groups=cardinality,
                bias=False,
                radix=radix,
                rectify_avg=rectify_avg,
L
littletomatodonkey 已提交
238
                name=name + "_splat")
littletomatodonkey's avatar
littletomatodonkey 已提交
239 240 241 242 243 244 245 246 247 248 249 250
        else:
            self.conv2 = ConvBNLayer(
                num_channels=group_width,
                num_filters=group_width,
                filter_size=3,
                stride=1,
                dilation=dialtion,
                groups=cardinality,
                act="relu",
                name=name + "_conv2")

        if avd and avd_first == False and (stride > 1 or is_first):
251
            self.avg_pool2d_2 = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
252
                kernel_size=3, stride=stride, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265

        self.conv3 = ConvBNLayer(
            num_channels=group_width,
            num_filters=planes * 4,
            filter_size=1,
            stride=1,
            groups=1,
            act=None,
            name=name + "_conv3")

        if stride != 1 or self.inplanes != self.planes * 4:
            if avg_down:
                if dilation == 1:
266
                    self.avg_pool2d_3 = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
267
                        kernel_size=stride, stride=stride, padding=0)
littletomatodonkey's avatar
littletomatodonkey 已提交
268
                else:
269
                    self.avg_pool2d_3 = AvgPool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
270 271
                        kernel_size=1, stride=1, padding=0, ceil_mode=True)

272
                self.conv4 = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
273 274 275
                    in_channels=self.inplanes,
                    out_channels=planes * 4,
                    kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
276 277 278
                    stride=1,
                    padding=0,
                    groups=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
279
                    weight_attr=ParamAttr(
280
                        name=name + "_weights", initializer=KaimingNormal()),
littletomatodonkey's avatar
littletomatodonkey 已提交
281 282
                    bias_attr=False)
            else:
283
                self.conv4 = Conv2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
284 285 286
                    in_channels=self.inplanes,
                    out_channels=planes * 4,
                    kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
287 288 289
                    stride=stride,
                    padding=0,
                    groups=1,
littletomatodonkey's avatar
littletomatodonkey 已提交
290
                    weight_attr=ParamAttr(
291 292
                        name=name + "_shortcut_weights",
                        initializer=KaimingNormal()),
littletomatodonkey's avatar
littletomatodonkey 已提交
293 294 295 296 297 298 299 300
                    bias_attr=False)

            bn_decay = 0.0
            self._batch_norm = BatchNorm(
                planes * 4,
                act=None,
                param_attr=ParamAttr(
                    name=name + "_shortcut_scale",
301
                    regularizer=L2Decay(bn_decay)),
littletomatodonkey's avatar
littletomatodonkey 已提交
302
                bias_attr=ParamAttr(
303
                    name + "_shortcut_offset", regularizer=L2Decay(bn_decay)),
littletomatodonkey's avatar
littletomatodonkey 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                moving_mean_name=name + "_shortcut_mean",
                moving_variance_name=name + "_shortcut_variance")

    def forward(self, x):
        short = x

        x = self.conv1(x)
        if self.avd and self.avd_first and (self.stride > 1 or self.is_first):
            x = self.avg_pool2d_1(x)

        x = self.conv2(x)

        if self.avd and self.avd_first == False and (self.stride > 1 or
                                                     self.is_first):
            x = self.avg_pool2d_2(x)

        x = self.conv3(x)

        if self.stride != 1 or self.inplanes != self.planes * 4:
            if self.avg_down:
                short = self.avg_pool2d_3(short)

            short = self.conv4(short)

            short = self._batch_norm(short)

330 331
        y = paddle.add(x=short, y=x)
        y = F.relu(y)
littletomatodonkey's avatar
littletomatodonkey 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        return y


class ResNeStLayer(nn.Layer):
    def __init__(self,
                 inplanes,
                 planes,
                 blocks,
                 radix,
                 cardinality,
                 bottleneck_width,
                 avg_down,
                 avd,
                 avd_first,
                 rectify_avg,
                 last_gamma,
                 stride=1,
                 dilation=1,
                 is_first=True,
                 name=None):
        super(ResNeStLayer, self).__init__()
        self.inplanes = inplanes
        self.planes = planes
        self.blocks = blocks
        self.radix = radix
        self.cardinality = cardinality
        self.bottleneck_width = bottleneck_width
        self.avg_down = avg_down
        self.avd = avd
        self.avd_first = avd_first
        self.rectify_avg = rectify_avg
        self.last_gamma = last_gamma
        self.is_first = is_first

        if dilation == 1 or dilation == 2:
            bottleneck_func = self.add_sublayer(
                name + "_bottleneck_0",
                BottleneckBlock(
                    inplanes=self.inplanes,
                    planes=planes,
                    stride=stride,
                    radix=radix,
                    cardinality=cardinality,
                    bottleneck_width=bottleneck_width,
                    avg_down=self.avg_down,
                    avd=avd,
                    avd_first=avd_first,
                    dilation=1,
                    is_first=is_first,
                    rectify_avg=rectify_avg,
                    last_gamma=last_gamma,
                    name=name + "_bottleneck_0"))
        elif dilation == 4:
            bottleneck_func = self.add_sublayer(
                name + "_bottleneck_0",
                BottleneckBlock(
                    inplanes=self.inplanes,
                    planes=planes,
                    stride=stride,
                    radix=radix,
                    cardinality=cardinality,
                    bottleneck_width=bottleneck_width,
                    avg_down=self.avg_down,
                    avd=avd,
                    avd_first=avd_first,
                    dilation=2,
                    is_first=is_first,
                    rectify_avg=rectify_avg,
                    last_gamma=last_gamma,
                    name=name + "_bottleneck_0"))
        else:
            raise RuntimeError("=>unknown dilation size")

        self.inplanes = planes * 4
        self.bottleneck_block_list = [bottleneck_func]
        for i in range(1, blocks):
L
littletomatodonkey 已提交
408
            curr_name = name + "_bottleneck_" + str(i)
littletomatodonkey's avatar
littletomatodonkey 已提交
409 410

            bottleneck_func = self.add_sublayer(
L
littletomatodonkey 已提交
411
                curr_name,
littletomatodonkey's avatar
littletomatodonkey 已提交
412 413 414 415 416 417 418 419 420 421 422 423
                BottleneckBlock(
                    inplanes=self.inplanes,
                    planes=planes,
                    radix=radix,
                    cardinality=cardinality,
                    bottleneck_width=bottleneck_width,
                    avg_down=self.avg_down,
                    avd=avd,
                    avd_first=avd_first,
                    dilation=dilation,
                    rectify_avg=rectify_avg,
                    last_gamma=last_gamma,
L
littletomatodonkey 已提交
424
                    name=curr_name))
littletomatodonkey's avatar
littletomatodonkey 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
            self.bottleneck_block_list.append(bottleneck_func)

    def forward(self, x):
        for bottleneck_block in self.bottleneck_block_list:
            x = bottleneck_block(x)
        return x


class ResNeSt(nn.Layer):
    def __init__(self,
                 layers,
                 radix=1,
                 groups=1,
                 bottleneck_width=64,
                 dilated=False,
                 dilation=1,
                 deep_stem=False,
                 stem_width=64,
                 avg_down=False,
                 rectify_avg=False,
                 avd=False,
                 avd_first=False,
                 final_drop=0.0,
                 last_gamma=False,
                 class_dim=1000):
        super(ResNeSt, self).__init__()

        self.cardinality = groups
        self.bottleneck_width = bottleneck_width
        # ResNet-D params
        self.inplanes = stem_width * 2 if deep_stem else 64
        self.avg_down = avg_down
        self.last_gamma = last_gamma
        # ResNeSt params
        self.radix = radix
        self.avd = avd
        self.avd_first = avd_first

        self.deep_stem = deep_stem
        self.stem_width = stem_width
        self.layers = layers
        self.final_drop = final_drop
        self.dilated = dilated
        self.dilation = dilation

        self.rectify_avg = rectify_avg

        if self.deep_stem:
            self.stem = nn.Sequential(
                ("conv1", ConvBNLayer(
                    num_channels=3,
                    num_filters=stem_width,
                    filter_size=3,
                    stride=2,
                    act="relu",
                    name="conv1")), ("conv2", ConvBNLayer(
                        num_channels=stem_width,
                        num_filters=stem_width,
                        filter_size=3,
                        stride=1,
                        act="relu",
                        name="conv2")), ("conv3", ConvBNLayer(
                            num_channels=stem_width,
                            num_filters=stem_width * 2,
                            filter_size=3,
                            stride=1,
                            act="relu",
                            name="conv3")))
        else:
            self.stem = ConvBNLayer(
                num_channels=3,
                num_filters=stem_width,
                filter_size=7,
                stride=2,
                act="relu",
                name="conv1")

502
        self.max_pool2d = MaxPool2D(kernel_size=3, stride=2, padding=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630

        self.layer1 = ResNeStLayer(
            inplanes=self.stem_width * 2
            if self.deep_stem else self.stem_width,
            planes=64,
            blocks=self.layers[0],
            radix=radix,
            cardinality=self.cardinality,
            bottleneck_width=bottleneck_width,
            avg_down=self.avg_down,
            avd=avd,
            avd_first=avd_first,
            rectify_avg=rectify_avg,
            last_gamma=last_gamma,
            stride=1,
            dilation=1,
            is_first=False,
            name="layer1")

        #         return

        self.layer2 = ResNeStLayer(
            inplanes=256,
            planes=128,
            blocks=self.layers[1],
            radix=radix,
            cardinality=self.cardinality,
            bottleneck_width=bottleneck_width,
            avg_down=self.avg_down,
            avd=avd,
            avd_first=avd_first,
            rectify_avg=rectify_avg,
            last_gamma=last_gamma,
            stride=2,
            name="layer2")

        if self.dilated or self.dilation == 4:
            self.layer3 = ResNeStLayer(
                inplanes=512,
                planes=256,
                blocks=self.layers[2],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=1,
                dilation=2,
                name="layer3")
            self.layer4 = ResNeStLayer(
                inplanes=1024,
                planes=512,
                blocks=self.layers[3],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=1,
                dilation=4,
                name="layer4")
        elif self.dilation == 2:
            self.layer3 = ResNeStLayer(
                inplanes=512,
                planes=256,
                blocks=self.layers[2],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=2,
                dilation=1,
                name="layer3")
            self.layer4 = ResNeStLayer(
                inplanes=1024,
                planes=512,
                blocks=self.layers[3],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=1,
                dilation=2,
                name="layer4")
        else:
            self.layer3 = ResNeStLayer(
                inplanes=512,
                planes=256,
                blocks=self.layers[2],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=2,
                name="layer3")
            self.layer4 = ResNeStLayer(
                inplanes=1024,
                planes=512,
                blocks=self.layers[3],
                radix=radix,
                cardinality=self.cardinality,
                bottleneck_width=bottleneck_width,
                avg_down=self.avg_down,
                avd=avd,
                avd_first=avd_first,
                rectify_avg=rectify_avg,
                last_gamma=last_gamma,
                stride=2,
                name="layer4")

631
        self.pool2d_avg = AdaptiveAvgPool2D(1)
littletomatodonkey's avatar
littletomatodonkey 已提交
632 633 634 635 636 637 638 639

        self.out_channels = 2048

        stdv = 1.0 / math.sqrt(self.out_channels * 1.0)

        self.out = Linear(
            self.out_channels,
            class_dim,
littletomatodonkey's avatar
littletomatodonkey 已提交
640
            weight_attr=ParamAttr(
littletomatodonkey's avatar
littletomatodonkey 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                initializer=nn.initializer.Uniform(-stdv, stdv),
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, x):
        x = self.stem(x)
        x = self.max_pool2d(x)
        x = self.layer1(x)
        x = self.layer2(x)

        x = self.layer3(x)

        x = self.layer4(x)
        x = self.pool2d_avg(x)
        x = paddle.reshape(x, shape=[-1, self.out_channels])
        x = self.out(x)
        return x


def ResNeSt50_fast_1s1x64d(**args):
    model = ResNeSt(
        layers=[3, 4, 6, 3],
        radix=1,
        groups=1,
        bottleneck_width=64,
        deep_stem=True,
        stem_width=32,
        avg_down=True,
        avd=True,
        avd_first=True,
        final_drop=0.0,
        **args)
    return model


def ResNeSt50(**args):
    model = ResNeSt(
        layers=[3, 4, 6, 3],
        radix=2,
        groups=1,
        bottleneck_width=64,
        deep_stem=True,
        stem_width=32,
        avg_down=True,
        avd=True,
        avd_first=False,
        final_drop=0.0,
        **args)
    return model
L
littletomatodonkey 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705


def ResNeSt101(**args):
    model = ResNeSt(
        layers=[3, 4, 23, 3],
        radix=2,
        groups=1,
        bottleneck_width=64,
        deep_stem=True,
        stem_width=64,
        avg_down=True,
        avd=True,
        avd_first=False,
        final_drop=0.0,
        **args)
    return model