PPLCNet_x1_0_distillation.yaml 3.6 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8
# global configs
Global:
  checkpoints: null
  pretrained_model: null
  output_dir: ./output
  device: gpu
  save_interval: 1
  eval_during_train: True
C
cuicheng01 已提交
9
  start_eval_epoch: 1
C
cuicheng01 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  eval_interval: 1
  epochs: 20
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
  # training model under @to_static
  to_static: False
  use_dali: False

# model architecture
Arch:
  name: "DistillationModel"
  class_num: &class_num 2
  # if not null, its lengths should be same as models
  pretrained_list:
  # if not null, its lengths should be same as models
  freeze_params_list:
  - True
  - False
  use_sync_bn: True
  models:
    - Teacher:
        name: ResNet101_vd
        class_num: *class_num
    - Student:
        name: PPLCNet_x1_0
        class_num: *class_num
        pretrained: True
        use_ssld: True

  infer_model_name: "Student"
 
# loss function config for traing/eval process
Loss:
  Train:
    - DistillationDMLLoss:
        weight: 1.0
        model_name_pairs:
        - ["Student", "Teacher"]
  Eval:
    - CELoss:
        weight: 1.0


Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.01
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00004


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
73
      image_root: ./dataset/person/
W
weisy11 已提交
74
      cls_label_path: ./dataset/person/train_list_for_distill.txt
C
cuicheng01 已提交
75 76 77 78 79
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
C
cuicheng01 已提交
80
            size: 192
C
cuicheng01 已提交
81 82 83 84 85 86
        - RandFlipImage:
            flip_code: 1
        - TimmAutoAugment:
            prob: 0.0
            config_str: rand-m9-mstd0.5-inc1
            interpolation: bicubic
C
cuicheng01 已提交
87
            img_size: 192
C
cuicheng01 已提交
88 89 90 91 92 93
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
        - RandomErasing:
C
cuicheng01 已提交
94
            EPSILON: 0.1
C
cuicheng01 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            sl: 0.02
            sh: 1.0/3.0
            r1: 0.3
            attempt: 10
            use_log_aspect: True
            mode: pixel
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: True
    loader:
      num_workers: 16
      use_shared_memory: True

  Eval:
    dataset: 
      name: ImageNetDataset
113 114
      image_root: ./dataset/person/
      cls_label_path: ./dataset/person/val_list.txt
C
cuicheng01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - ResizeImage:
            resize_short: 256
        - CropImage:
            size: 224
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''
    sampler:
      name: DistributedBatchSampler
      batch_size: 64
      drop_last: False
      shuffle: False
    loader:
      num_workers: 4
      use_shared_memory: True

Infer:
  infer_imgs: docs/images/inference_deployment/whl_demo.jpg
  batch_size: 10
  transforms:
    - DecodeImage:
        to_rgb: True
        channel_first: False
    - ResizeImage:
        resize_short: 256
    - CropImage:
        size: 224
    - NormalizeImage:
        scale: 1.0/255.0
        mean: [0.485, 0.456, 0.406]
        std: [0.229, 0.224, 0.225]
        order: ''
    - ToCHWImage:
  PostProcess:
C
cuicheng01 已提交
155 156 157 158
    name: ThreshOutput
    threshold: 0.9
    label_0: nobody
    label_1: someone
C
cuicheng01 已提交
159 160 161 162 163 164 165 166 167 168

Metric:
    Train:
    - DistillationTopkAcc:
        model_key: "Student"
        topk: [1, 2]
    Eval:
    - TprAtFpr:
    - TopkAcc:
        topk: [1, 2]