classification.py 7.4 KB
Newer Older
D
dongshuilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import platform
import paddle

21 22 23 24 25 26 27 28 29 30 31 32
from ...utils.misc import AverageMeter
from ...utils import logger
from ...data import build_dataloader
from ...loss import build_loss
from ...metric import build_metrics


class ClassEval(object):
    def __init__(self, config, mode, model):
        self.config = config
        self.model = model
        self.use_dali = self.config["Global"].get("use_dali", False)
T
Tingquan Gao 已提交
33 34 35
        self.eval_metric_func = build_metrics(config, "eval")
        self.eval_dataloader = build_dataloader(config, "eval")
        self.eval_loss_func = build_loss(config, "eval")
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
        self.output_info = dict()

    @paddle.no_grad()
    def __call__(self, epoch_id=0):
        self.model.eval()

        if hasattr(self.eval_metric_func, "reset"):
            self.eval_metric_func.reset()

        time_info = {
            "batch_cost": AverageMeter(
                "batch_cost", '.5f', postfix=" s,"),
            "reader_cost": AverageMeter(
                "reader_cost", ".5f", postfix=" s,"),
        }
T
Tingquan Gao 已提交
51
        print_batch_step = self.config["Global"]["print_batch_step"]
52 53

        tic = time.time()
T
Tingquan Gao 已提交
54
        total_samples = self.eval_dataloader["Eval"].total_samples
55
        accum_samples = 0
T
Tingquan Gao 已提交
56 57
        max_iter = self.eval_dataloader["Eval"].max_iter
        for iter_id, batch in enumerate(self.eval_dataloader["Eval"]):
58 59 60 61 62 63 64 65 66 67 68 69
            if iter_id >= max_iter:
                break
            if iter_id == 5:
                for key in time_info:
                    time_info[key].reset()

            time_info["reader_cost"].update(time.time() - tic)
            batch_size = batch[0].shape[0]
            batch[0] = paddle.to_tensor(batch[0])
            if not self.config["Global"].get("use_multilabel", False):
                batch[1] = batch[1].reshape([-1, 1]).astype("int64")

T
Tingquan Gao 已提交
70
            out = self.model(batch)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

            # just for DistributedBatchSampler issue: repeat sampling
            current_samples = batch_size * paddle.distributed.get_world_size()
            accum_samples += current_samples

            if isinstance(out, dict) and "Student" in out:
                out = out["Student"]
            if isinstance(out, dict) and "logits" in out:
                out = out["logits"]

            # gather Tensor when distributed
            if paddle.distributed.get_world_size() > 1:
                label_list = []
                device_id = paddle.distributed.ParallelEnv().device_id
                label = batch[1].cuda(device_id) if self.config["Global"][
                    "device"] == "gpu" else batch[1]
                paddle.distributed.all_gather(label_list, label)
                labels = paddle.concat(label_list, 0)

                if isinstance(out, list):
                    preds = []
                    for x in out:
                        pred_list = []
                        paddle.distributed.all_gather(pred_list, x)
                        pred_x = paddle.concat(pred_list, 0)
                        preds.append(pred_x)
H
HydrogenSulfate 已提交
97
                else:
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
                    pred_list = []
                    paddle.distributed.all_gather(pred_list, out)
                    preds = paddle.concat(pred_list, 0)

                if accum_samples > total_samples and not self.use_dali:
                    if isinstance(preds, list):
                        preds = [
                            pred[:total_samples + current_samples -
                                 accum_samples] for pred in preds
                        ]
                    else:
                        preds = preds[:total_samples + current_samples -
                                      accum_samples]
                    labels = labels[:total_samples + current_samples -
                                    accum_samples]
                    current_samples = total_samples + current_samples - accum_samples
D
dongshuilong 已提交
114
            else:
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
                labels = batch[1]
                preds = out

            # calc loss
            if self.eval_loss_func is not None:
                loss_dict = self.eval_loss_func(preds, labels)

                for key in loss_dict:
                    if key not in self.output_info:
                        self.output_info[key] = AverageMeter(key, '7.5f')
                    self.output_info[key].update(
                        float(loss_dict[key]), current_samples)

            #  calc metric
            if self.eval_metric_func is not None:
                self.eval_metric_func(preds, labels)
            time_info["batch_cost"].update(time.time() - tic)

T
Tingquan Gao 已提交
133
            if iter_id % print_batch_step == 0:
134 135 136 137
                time_msg = "s, ".join([
                    "{}: {:.5f}".format(key, time_info[key].avg)
                    for key in time_info
                ])
D
dongshuilong 已提交
138

139 140
                ips_msg = "ips: {:.5f} images/sec".format(
                    batch_size / time_info["batch_cost"].avg)
D
dongshuilong 已提交
141

142 143 144 145 146 147 148 149 150 151 152 153 154 155
                if "ATTRMetric" in self.config["Metric"]["Eval"][0]:
                    metric_msg = ""
                else:
                    metric_msg = ", ".join([
                        "{}: {:.5f}".format(key, self.output_info[key].val)
                        for key in self.output_info
                    ])
                    metric_msg += ", {}".format(self.eval_metric_func.avg_info)
                logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
                    epoch_id, iter_id, max_iter, metric_msg, time_msg,
                    ips_msg))

            tic = time.time()
        if self.use_dali:
T
Tingquan Gao 已提交
156
            self.eval_dataloader["Eval"].reset()
157 158 159 160 161 162 163

        if "ATTRMetric" in self.config["Metric"]["Eval"][0]:
            metric_msg = ", ".join([
                "evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
                format(*self.eval_metric_func.attr_res())
            ])
            logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
D
dongshuilong 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
            # do not try to save best eval.model
            if self.eval_metric_func is None:
                return -1
            # return 1st metric in the dict
            return self.eval_metric_func.attr_res()[0]
        else:
            metric_msg = ", ".join([
                "{}: {:.5f}".format(key, self.output_info[key].avg)
                for key in self.output_info
            ])
            metric_msg += ", {}".format(self.eval_metric_func.avg_info)
            logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))

            # do not try to save best eval.model
            if self.eval_metric_func is None:
                return -1
            # return 1st metric in the dict
            return self.eval_metric_func.avg
        self.model.train()
        return eval_result