dpn.py 12.2 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WuHaobo 已提交
19
import numpy as np
littletomatodonkey's avatar
littletomatodonkey 已提交
20
import sys
21
import paddle
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
22 23 24 25
from paddle import ParamAttr
import paddle.nn as nn
from paddle.nn import Conv2d, Pool2D, BatchNorm, Linear
from paddle.nn.initializer import Uniform
26 27 28 29 30 31 32 33 34 35 36 37 38

import math

__all__ = [
    "DPN",
    "DPN68",
    "DPN92",
    "DPN98",
    "DPN107",
    "DPN131",
]


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
39
class ConvBNLayer(nn.Layer):
40 41 42 43 44 45 46 47 48 49 50
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(ConvBNLayer, self).__init__()

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
51 52 53 54
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
55 56 57
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
58
            weight_attr=ParamAttr(name=name + "_weights"),
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
            bias_attr=False)
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

    def forward(self, input):
        y = self._conv(input)
        y = self._batch_norm(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
74
class BNACConvLayer(nn.Layer):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 pad=0,
                 groups=1,
                 act="relu",
                 name=None):
        super(BNACConvLayer, self).__init__()
        self.num_channels = num_channels

        self._batch_norm = BatchNorm(
            num_channels,
            act=act,
            param_attr=ParamAttr(name=name + '_bn_scale'),
            bias_attr=ParamAttr(name + '_bn_offset'),
            moving_mean_name=name + '_bn_mean',
            moving_variance_name=name + '_bn_variance')

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
95 96 97 98
        self._conv = Conv2d(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
99 100 101
            stride=stride,
            padding=pad,
            groups=groups,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
102
            weight_attr=ParamAttr(name=name + "_weights"),
103 104 105 106 107 108 109 110
            bias_attr=False)

    def forward(self, input):
        y = self._batch_norm(input)
        y = self._conv(y)
        return y


littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
111
class DualPathFactory(nn.Layer):
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    def __init__(self,
                 num_channels,
                 num_1x1_a,
                 num_3x3_b,
                 num_1x1_c,
                 inc,
                 G,
                 _type='normal',
                 name=None):
        super(DualPathFactory, self).__init__()

        self.num_1x1_c = num_1x1_c
        self.inc = inc
        self.name = name

        kw = 3
        kh = 3
        pw = (kw - 1) // 2
        ph = (kh - 1) // 2

        # type
        if _type == 'proj':
            key_stride = 1
            self.has_proj = True
        elif _type == 'down':
            key_stride = 2
            self.has_proj = True
        elif _type == 'normal':
            key_stride = 1
            self.has_proj = False
        else:
            print("not implemented now!!!")
            sys.exit(1)
W
WuHaobo 已提交
145

146 147
        data_in_ch = sum(num_channels) if isinstance(num_channels,
                                                     list) else num_channels
W
WuHaobo 已提交
148

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        if self.has_proj:
            self.c1x1_w_func = BNACConvLayer(
                num_channels=data_in_ch,
                num_filters=num_1x1_c + 2 * inc,
                filter_size=(1, 1),
                pad=(0, 0),
                stride=(key_stride, key_stride),
                name=name + "_match")

        self.c1x1_a_func = BNACConvLayer(
            num_channels=data_in_ch,
            num_filters=num_1x1_a,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv1")

        self.c3x3_b_func = BNACConvLayer(
            num_channels=num_1x1_a,
            num_filters=num_3x3_b,
            filter_size=(kw, kh),
            pad=(pw, ph),
            stride=(key_stride, key_stride),
            groups=G,
            name=name + "_conv2")
W
WuHaobo 已提交
173

174 175 176 177 178 179 180 181 182 183
        self.c1x1_c_func = BNACConvLayer(
            num_channels=num_3x3_b,
            num_filters=num_1x1_c + inc,
            filter_size=(1, 1),
            pad=(0, 0),
            name=name + "_conv3")

    def forward(self, input):
        # PROJ
        if isinstance(input, list):
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
184
            data_in = paddle.concat([input[0], input[1]], axis=1)
185 186 187 188 189
        else:
            data_in = input

        if self.has_proj:
            c1x1_w = self.c1x1_w_func(data_in)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
190 191
            data_o1, data_o2 = paddle.split(
                c1x1_w, num_or_sections=[self.num_1x1_c, 2 * self.inc], axis=1)
192 193 194 195 196 197 198 199
        else:
            data_o1 = input[0]
            data_o2 = input[1]

        c1x1_a = self.c1x1_a_func(data_in)
        c3x3_b = self.c3x3_b_func(c1x1_a)
        c1x1_c = self.c1x1_c_func(c3x3_b)

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
200 201
        c1x1_c1, c1x1_c2 = paddle.split(
            c1x1_c, num_or_sections=[self.num_1x1_c, self.inc], axis=1)
202 203

        # OUTPUTS
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
204 205
        summ = paddle.elementwise_add(x=data_o1, y=c1x1_c1)
        dense = paddle.concat([data_o2, c1x1_c2], axis=1)
206 207
        # tensor, channels
        return [summ, dense]
W
WuHaobo 已提交
208

209

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
210
class DPN(nn.Layer):
211 212 213 214 215 216
    def __init__(self, layers=60, class_dim=1000):
        super(DPN, self).__init__()

        self._class_dim = class_dim

        args = self.get_net_args(layers)
W
WuHaobo 已提交
217 218 219 220 221 222 223 224 225 226
        bws = args['bw']
        inc_sec = args['inc_sec']
        rs = args['r']
        k_r = args['k_r']
        k_sec = args['k_sec']
        G = args['G']
        init_num_filter = args['init_num_filter']
        init_filter_size = args['init_filter_size']
        init_padding = args['init_padding']

227
        self.k_sec = k_sec
W
WuHaobo 已提交
228

229 230
        self.conv1_x_1_func = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
231
            num_filters=init_num_filter,
232
            filter_size=3,
W
WuHaobo 已提交
233
            stride=2,
234
            pad=1,
W
WuHaobo 已提交
235
            act='relu',
236 237 238 239
            name="conv1")

        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
240

241 242 243
        num_channel_dpn = init_num_filter

        self.dpn_func_list = []
W
WuHaobo 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        #conv2 - conv5
        match_list, num = [], 0
        for gc in range(4):
            bw = bws[gc]
            inc = inc_sec[gc]
            R = (k_r * bw) // rs[gc]
            if gc == 0:
                _type1 = 'proj'
                _type2 = 'normal'
                match = 1
            else:
                _type1 = 'down'
                _type2 = 'normal'
                match = match + k_sec[gc - 1]
            match_list.append(match)
259 260 261 262 263 264 265 266 267 268 269 270 271
            self.dpn_func_list.append(
                self.add_sublayer(
                    "dpn{}".format(match),
                    DualPathFactory(
                        num_channels=num_channel_dpn,
                        num_1x1_a=R,
                        num_3x3_b=R,
                        num_1x1_c=bw,
                        inc=inc,
                        G=G,
                        _type=_type1,
                        name="dpn" + str(match))))
            num_channel_dpn = [bw, 3 * inc]
W
WuHaobo 已提交
272 273 274 275 276

            for i_ly in range(2, k_sec[gc] + 1):
                num += 1
                if num in match_list:
                    num += 1
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                self.dpn_func_list.append(
                    self.add_sublayer(
                        "dpn{}".format(num),
                        DualPathFactory(
                            num_channels=num_channel_dpn,
                            num_1x1_a=R,
                            num_3x3_b=R,
                            num_1x1_c=bw,
                            inc=inc,
                            G=G,
                            _type=_type2,
                            name="dpn" + str(num))))

                num_channel_dpn = [
                    num_channel_dpn[0], num_channel_dpn[1] + inc
                ]

        out_channel = sum(num_channel_dpn)

        self.conv5_x_x_bn = BatchNorm(
            num_channels=sum(num_channel_dpn),
            act="relu",
W
WuHaobo 已提交
299 300 301
            param_attr=ParamAttr(name='final_concat_bn_scale'),
            bias_attr=ParamAttr('final_concat_bn_offset'),
            moving_mean_name='final_concat_bn_mean',
302 303 304
            moving_variance_name='final_concat_bn_variance')

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
W
WuHaobo 已提交
305 306

        stdv = 0.01
307 308 309 310

        self.out = Linear(
            out_channel,
            class_dim,
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
311 312
            weight_attr=ParamAttr(
                initializer=Uniform(-stdv, stdv), name="fc_weights"),
313
            bias_attr=ParamAttr(name="fc_offset"))
W
WuHaobo 已提交
314

315 316 317 318 319 320 321 322 323 324 325 326
    def forward(self, input):
        conv1_x_1 = self.conv1_x_1_func(input)
        convX_x_x = self.pool2d_max(conv1_x_1)

        dpn_idx = 0
        for gc in range(4):
            convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
            dpn_idx += 1
            for i_ly in range(2, self.k_sec[gc] + 1):
                convX_x_x = self.dpn_func_list[dpn_idx](convX_x_x)
                dpn_idx += 1

littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
327
        conv5_x_x = paddle.concat(convX_x_x, axis=1)
328 329 330
        conv5_x_x = self.conv5_x_x_bn(conv5_x_x)

        y = self.pool2d_avg(conv5_x_x)
littletomatodonkey's avatar
fix dpn  
littletomatodonkey 已提交
331
        y = paddle.reshape(y, shape=[0, -1])
332 333
        y = self.out(y)
        return y
W
WuHaobo 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    def get_net_args(self, layers):
        if layers == 68:
            k_r = 128
            G = 32
            k_sec = [3, 4, 12, 3]
            inc_sec = [16, 32, 32, 64]
            bw = [64, 128, 256, 512]
            r = [64, 64, 64, 64]
            init_num_filter = 10
            init_filter_size = 3
            init_padding = 1
        elif layers == 92:
            k_r = 96
            G = 32
            k_sec = [3, 4, 20, 3]
            inc_sec = [16, 32, 24, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 64
            init_filter_size = 7
            init_padding = 3
        elif layers == 98:
            k_r = 160
            G = 40
            k_sec = [3, 6, 20, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 96
            init_filter_size = 7
            init_padding = 3
        elif layers == 107:
            k_r = 200
            G = 50
            k_sec = [4, 8, 20, 3]
            inc_sec = [20, 64, 64, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        elif layers == 131:
            k_r = 160
            G = 40
            k_sec = [4, 8, 28, 3]
            inc_sec = [16, 32, 32, 128]
            bw = [256, 512, 1024, 2048]
            r = [256, 256, 256, 256]
            init_num_filter = 128
            init_filter_size = 7
            init_padding = 3
        else:
            raise NotImplementedError
        net_arg = {
            'k_r': k_r,
            'G': G,
            'k_sec': k_sec,
            'inc_sec': inc_sec,
            'bw': bw,
            'r': r
        }
        net_arg['init_num_filter'] = init_num_filter
        net_arg['init_filter_size'] = init_filter_size
        net_arg['init_padding'] = init_padding

        return net_arg


littletomatodonkey's avatar
littletomatodonkey 已提交
403 404
def DPN68(**args):
    model = DPN(layers=68, **args)
W
WuHaobo 已提交
405 406 407
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
408 409
def DPN92(**args):
    model = DPN(layers=92, **args)
W
WuHaobo 已提交
410 411 412
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
413 414
def DPN98(**args):
    model = DPN(layers=98, **args)
W
WuHaobo 已提交
415 416 417
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
418 419
def DPN107(**args):
    model = DPN(layers=107, **args)
W
WuHaobo 已提交
420 421 422
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
423 424 425
def DPN131(**args):
    model = DPN(layers=131, **args)
    return model