resnet_vd.py 10.3 KB
Newer Older
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import numpy as np
W
WuHaobo 已提交
20 21 22
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25 26
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
27 28

__all__ = [
29
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
W
WuHaobo 已提交
30 31 32
]


33 34 35 36 37 38 39 40 41
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
W
WuHaobo 已提交
42
            act=None,
43 44 45 46 47 48 49 50
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
            pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg')
        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
51 52
            num_filters=num_filters,
            filter_size=filter_size,
53
            stride=stride,
W
WuHaobo 已提交
54 55 56
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
57
            param_attr=ParamAttr(name=name + "_weights"),
W
WuHaobo 已提交
58 59 60 61 62
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
63 64
        self._batch_norm = BatchNorm(
            num_filters,
W
WuHaobo 已提交
65
            act=act,
66 67 68 69 70 71 72 73 74 75 76 77
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y

W
WuHaobo 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
91 92 93 94
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
95 96
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
97 98 99 100 101
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2b")
102 103
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
104 105 106 107 108
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)
W
WuHaobo 已提交
124

125 126 127 128 129 130 131 132
        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)
W
WuHaobo 已提交
133

134 135 136 137 138 139 140 141 142 143 144 145 146

class BisicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BisicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
W
WuHaobo 已提交
147 148 149
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
150
            act='relu',
W
WuHaobo 已提交
151
            name=name + "_branch2a")
152 153
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
W
WuHaobo 已提交
154 155 156 157 158
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv1)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, class_dim=1000):
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512,
                        1024] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
W
WuHaobo 已提交
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        self.block_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bottleneck_block)
                    shortcut = True
        else:
            for block in range(len(depth)):
                shortcut = False
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    bisic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BisicBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    self.block_list.append(bisic_block)
                    shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
W
WuHaobo 已提交
304 305 306
    return model


307 308
def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
W
WuHaobo 已提交
309 310 311
    return model


littletomatodonkey's avatar
littletomatodonkey 已提交
312
def ResNet50_vd(**args):
313
    model = ResNet_vd(layers=50, **args)
W
WuHaobo 已提交
314 315 316
    return model


317 318
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
W
WuHaobo 已提交
319 320 321
    return model


322 323
def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
W
WuHaobo 已提交
324 325 326
    return model


327 328
def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
W
WuHaobo 已提交
329
    return model