utils.py 5.0 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import argparse
W
WuHaobo 已提交
16 17 18 19
import cv2
import numpy as np


20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    # general params
    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image_file", type=str)
    parser.add_argument("--use_gpu", type=str2bool, default=True)

    # params for preprocess
    parser.add_argument("--resize_short", type=int, default=256)
    parser.add_argument("--resize", type=int, default=224)
    parser.add_argument("--normalize", type=str2bool, default=True)

    # params for predict
    parser.add_argument("--model_file", type=str)
    parser.add_argument("--params_file", type=str)
    parser.add_argument("-b", "--batch_size", type=int, default=1)
    parser.add_argument("--use_fp16", type=str2bool, default=False)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)
    parser.add_argument("--enable_benchmark", type=str2bool, default=False)
    parser.add_argument("--top_k", type=int, default=1)
    parser.add_argument("--hubserving", type=str2bool, default=False)

    # params for infer
    parser.add_argument("--model", type=str)
    parser.add_argument("--pretrained_model", type=str)
    parser.add_argument("--class_num", type=int, default=1000)
    parser.add_argument(
        "--load_static_weights",
        type=str2bool,
        default=False,
        help='Whether to load the pretrained weights saved in static mode')

    # parameters for pre-label the images
    parser.add_argument(
        "--pre_label_image",
        type=str2bool,
        default=False,
        help="Whether to pre-label the images using the loaded weights")
    parser.add_argument("--pre_label_out_idr", type=str, default=None)

    return parser.parse_args()


def preprocess(img, args):
    resize_op = ResizeImage(resize_short=args.resize_short)
    img = resize_op(img)
    crop_op = CropImage(size=(args.resize, args.resize))
    img = crop_op(img)
    if args.normalize:
        img_mean = [0.485, 0.456, 0.406]
        img_std = [0.229, 0.224, 0.225]
        img_scale = 1.0 / 255.0
        normalize_op = NormalizeImage(
            scale=img_scale, mean=img_mean, std=img_std)
        img = normalize_op(img)
    tensor_op = ToTensor()
    img = tensor_op(img)
    return img


def postprocess(output, args):
    output = output.flatten()
    classes = np.argpartition(output, -args.top_k)[-args.top_k:]
    classes = classes[np.argsort(-output[classes])]
    scores = output[classes]
    return classes, scores
W
WuHaobo 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142


class ResizeImage(object):
    def __init__(self, resize_short=None):
        self.resize_short = resize_short

    def __call__(self, img):
        img_h, img_w = img.shape[:2]
        percent = float(self.resize_short) / min(img_w, img_h)
        w = int(round(img_w * percent))
        h = int(round(img_h * percent))
        return cv2.resize(img, (w, h))


class CropImage(object):
    def __init__(self, size):
        if type(size) is int:
            self.size = (size, size)
        else:
            self.size = size

    def __call__(self, img):
        w, h = self.size
        img_h, img_w = img.shape[:2]
        w_start = (img_w - w) // 2
        h_start = (img_h - h) // 2

        w_end = w_start + w
        h_end = h_start + h
        return img[h_start:h_end, w_start:w_end, :]


class NormalizeImage(object):
    def __init__(self, scale=None, mean=None, std=None):
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, img):
        return (img.astype('float32') * self.scale - self.mean) / self.std


class ToTensor(object):
    def __init__(self):
        pass

    def __call__(self, img):
        img = img.transpose((2, 0, 1))
        return img
143 144 145 146 147 148 149 150 151 152 153 154


class Base64ToCV2(object):
    def __init__(self):
        pass

    def __call__(self, b64str):
        import base64
        data = base64.b64decode(b64str.encode('utf8'))
        data = np.fromstring(data, np.uint8)
        data = cv2.imdecode(data, cv2.IMREAD_COLOR)[:, :, ::-1]
        return data