GeneralRecognition_PPLCNet_x2_5_quantization.yaml 3.3 KB
Newer Older
C
cuicheng01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
# global configs
Global:
  checkpoints: null
  pretrained_model: https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/general_PPLCNet_x2_5_pretrained_v1.0.pdparams
  output_dir: ./output/
  device: gpu
  save_interval: 1
  eval_during_train: True
  eval_interval: 1
  epochs: 30
  print_batch_step: 10
  use_visualdl: False
  # used for static mode and model export
  image_shape: [3, 224, 224]
  save_inference_dir: ./inference
  eval_mode: retrieval
  use_dali: False
  to_static: False

# for quantizaiton or prune model
Slim:
  ## for prune
  quant:
    name: pact

# model architecture
Arch:
  name: RecModel
  infer_output_key: features
  infer_add_softmax: False

  Backbone: 
    name: PPLCNet_x2_5
    pretrained: False
    use_ssld: True
  BackboneStopLayer:
    name: flatten_0
  Neck:
    name: FC
    embedding_size: 1280
    class_num: 512
  Head:
    name: ArcMargin 
    embedding_size: 512
    class_num: 185341
    margin: 0.2
    scale: 30

# loss function config for traing/eval process
Loss:
  Train:
    - CELoss:
        weight: 1.0
  Eval:
    - CELoss:
        weight: 1.0

Optimizer:
  name: Momentum
  momentum: 0.9
  lr:
    name: Cosine
    learning_rate: 0.002
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    coeff: 0.00001


# data loader for train and eval
DataLoader:
  Train:
    dataset:
      name: ImageNetDataset
      image_root: ./dataset/
      cls_label_path: ./dataset/train_reg_all_data.txt
      transform_ops:
        - DecodeImage:
            to_rgb: True
            channel_first: False
        - RandCropImage:
            size: 224
        - RandFlipImage:
            flip_code: 1
        - NormalizeImage:
            scale: 1.0/255.0
            mean: [0.485, 0.456, 0.406]
            std: [0.229, 0.224, 0.225]
            order: ''

    sampler:
      name: DistributedBatchSampler
      batch_size: 128
      drop_last: False
      shuffle: True
    loader:
      num_workers: 4
      use_shared_memory: True

  Eval:
    Query:
      dataset: 
        name: VeriWild
        image_root: ./dataset/Aliproduct/
        cls_label_path: ./dataset/Aliproduct/val_list.txt
        transform_ops:
          - DecodeImage:
              to_rgb: True
              channel_first: False
          - ResizeImage:
              size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
      sampler:
        name: DistributedBatchSampler
        batch_size: 64
        drop_last: False
        shuffle: False
      loader:
        num_workers: 4
        use_shared_memory: True

    Gallery:
      dataset: 
        name: VeriWild
        image_root: ./dataset/Aliproduct/
        cls_label_path: ./dataset/Aliproduct/val_list.txt
        transform_ops:
          - DecodeImage:
              to_rgb: True
              channel_first: False
          - ResizeImage:
              size: 224
          - NormalizeImage:
              scale: 0.00392157
              mean: [0.485, 0.456, 0.406]
              std: [0.229, 0.224, 0.225]
              order: ''
      sampler:
        name: DistributedBatchSampler
        batch_size: 64
        drop_last: False
        shuffle: False
      loader:
        num_workers: 4
        use_shared_memory: True

Metric:
  Eval:
    - Recallk:
        topk: [1, 5]