res2net_vd.py 9.5 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
W
WuHaobo 已提交
2
#
littletomatodonkey's avatar
littletomatodonkey 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
W
WuHaobo 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
littletomatodonkey's avatar
littletomatodonkey 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WuHaobo 已提交
14 15 16 17 18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19 20
import numpy as np
import paddle
W
WuHaobo 已提交
21 22
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
23 24 25
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout

import math
W
WuHaobo 已提交
26 27

__all__ = [
28 29
    "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_4s", "Res2Net50_vd_14w_8s",
    "Res2Net50_vd_48w_2s", "Res2Net50_vd_26w_6s", "Res2Net50_vd_26w_8s",
W
WuHaobo 已提交
30 31 32 33
    "Res2Net101_vd_26w_4s", "Res2Net152_vd_26w_4s", "Res2Net200_vd_26w_4s"
]


34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None, ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
littletomatodonkey's avatar
littletomatodonkey 已提交
49 50 51 52 53
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels1,
                 num_channels2,
                 num_filters,
                 stride,
                 scales,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BottleneckBlock, self).__init__()
        self.stride = stride
        self.scales = scales
        self.conv0 = ConvBNLayer(
            num_channels=num_channels1,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")
        self.conv1_list = []
        for s in range(scales - 1):
            conv1 = self.add_sublayer(
                name + '_branch2b_' + str(s + 1),
                ConvBNLayer(
                    num_channels=num_filters // scales,
                    num_filters=num_filters // scales,
                    filter_size=3,
                    stride=stride,
                    act='relu',
                    name=name + '_branch2b_' + str(s + 1)))
            self.conv1_list.append(conv1)
        self.pool2d_avg = Pool2D(
            pool_size=3, pool_stride=stride, pool_padding=1, pool_type='avg')

        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_channels2,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels1,
                num_filters=num_channels2,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        xs = fluid.layers.split(y, self.scales, 1)
        ys = []
        for s, conv1 in enumerate(self.conv1_list):
            if s == 0 or self.stride == 2:
                ys.append(conv1(xs[s]))
            else:
                ys.append(conv1(xs[s] + ys[-1]))
        if self.stride == 1:
            ys.append(xs[-1])
        else:
            ys.append(self.pool2d_avg(xs[-1]))
        conv1 = fluid.layers.concat(ys, axis=1)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
littletomatodonkey's avatar
littletomatodonkey 已提交
156 157
        y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
        return y
158 159 160 161 162 163


class Res2Net_vd(fluid.dygraph.Layer):
    def __init__(self, layers=50, scales=4, width=26, class_dim=1000):
        super(Res2Net_vd, self).__init__()

W
WuHaobo 已提交
164 165 166
        self.layers = layers
        self.scales = scales
        self.width = width
167
        basic_width = self.width * self.scales
W
WuHaobo 已提交
168 169
        supported_layers = [50, 101, 152, 200]
        assert layers in supported_layers, \
littletomatodonkey's avatar
littletomatodonkey 已提交
170 171
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)
172

W
WuHaobo 已提交
173 174 175 176 177 178 179 180
        if layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
181 182 183 184 185 186
        num_channels = [64, 256, 512, 1024]
        num_channels2 = [256, 512, 1024, 2048]
        num_filters = [basic_width * t for t in [1, 2, 4, 8]]

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
W
WuHaobo 已提交
187 188 189 190
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
191 192 193
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
W
WuHaobo 已提交
194 195 196 197
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
198 199 200
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
W
WuHaobo 已提交
201 202 203 204
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
205 206 207 208 209
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        self.block_list = []
W
WuHaobo 已提交
210
        for block in range(len(depth)):
211
            shortcut = False
W
WuHaobo 已提交
212
            for i in range(depth[block]):
littletomatodonkey's avatar
littletomatodonkey 已提交
213
                if layers in [101, 152, 200] and block == 2:
W
WuHaobo 已提交
214 215 216 217 218 219
                    if i == 0:
                        conv_name = "res" + str(block + 2) + "a"
                    else:
                        conv_name = "res" + str(block + 2) + "b" + str(i)
                else:
                    conv_name = "res" + str(block + 2) + chr(97 + i)
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
                bottleneck_block = self.add_sublayer(
                    'bb_%d_%d' % (block, i),
                    BottleneckBlock(
                        num_channels1=num_channels[block]
                        if i == 0 else num_channels2[block],
                        num_channels2=num_channels2[block],
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        scales=scales,
                        shortcut=shortcut,
                        if_first=block == i == 0,
                        name=conv_name))
                self.block_list.append(bottleneck_block)
                shortcut = True

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
W
WuHaobo 已提交
246
                initializer=fluid.initializer.Uniform(-stdv, stdv),
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
                name="fc_weights"),
            bias_attr=ParamAttr(name="fc_offset"))

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)
        for block in self.block_list:
            y = block(y)
        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y


def Res2Net50_vd_48w_2s(**args):
    model = Res2Net_vd(layers=50, scales=2, width=48, **args)
    return model
W
WuHaobo 已提交
266 267


268 269
def Res2Net50_vd_26w_4s(**args):
    model = Res2Net_vd(layers=50, scales=4, width=26, **args)
W
WuHaobo 已提交
270 271 272
    return model


273 274
def Res2Net50_vd_14w_8s(**args):
    model = Res2Net_vd(layers=50, scales=8, width=14, **args)
W
WuHaobo 已提交
275 276 277
    return model


278 279
def Res2Net50_vd_48w_2s(**args):
    model = Res2Net_vd(layers=50, scales=2, width=48, **args)
W
WuHaobo 已提交
280 281 282
    return model


283 284
def Res2Net50_vd_26w_6s(**args):
    model = Res2Net_vd(layers=50, scales=6, width=26, **args)
W
WuHaobo 已提交
285 286 287
    return model


288 289
def Res2Net50_vd_26w_8s(**args):
    model = Res2Net_vd(layers=50, scales=8, width=26, **args)
W
WuHaobo 已提交
290 291 292
    return model


293 294
def Res2Net101_vd_26w_4s(**args):
    model = Res2Net_vd(layers=101, scales=4, width=26, **args)
W
WuHaobo 已提交
295 296 297
    return model


298 299
def Res2Net152_vd_26w_4s(**args):
    model = Res2Net_vd(layers=152, scales=4, width=26, **args)
W
WuHaobo 已提交
300 301 302
    return model


303 304
def Res2Net200_vd_26w_4s(**args):
    model = Res2Net_vd(layers=200, scales=4, width=26, **args)
W
WuHaobo 已提交
305
    return model