googlenet.py 6.5 KB
Newer Older
W
WuHaobo 已提交
1 2 3
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
4 5 6
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
import math

littletomatodonkey's avatar
littletomatodonkey 已提交
7 8
__all__ = ['GoogLeNet']

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

def xavier(channels, filter_size, name):
    stdv = (3.0 / (filter_size**2 * channels))**0.5
    param_attr = ParamAttr(
        initializer=fluid.initializer.Uniform(-stdv, stdv),
        name=name + "_weights")
    return param_attr


class ConvLayer(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvLayer, self).__init__()

        self._conv = Conv2D(
            num_channels=num_channels,
W
WuHaobo 已提交
31 32 33 34 35 36
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)

    def forward(self, inputs):
        y = self._conv(inputs)
        return y


class Inception(fluid.dygraph.Layer):
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter1,
                 filter3R,
                 filter3,
                 filter5R,
                 filter5,
                 proj,
                 name=None):
        super(Inception, self).__init__()

        self._conv1 = ConvLayer(
            input_channels, filter1, 1, name="inception_" + name + "_1x1")
        self._conv3r = ConvLayer(
            input_channels,
            filter3R,
            1,
W
WuHaobo 已提交
64
            name="inception_" + name + "_3x3_reduce")
65 66 67 68 69 70
        self._conv3 = ConvLayer(
            filter3R, filter3, 3, name="inception_" + name + "_3x3")
        self._conv5r = ConvLayer(
            input_channels,
            filter5R,
            1,
W
WuHaobo 已提交
71
            name="inception_" + name + "_5x5_reduce")
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self._conv5 = ConvLayer(
            filter5R, filter5, 5, name="inception_" + name + "_5x5")
        self._pool = Pool2D(
            pool_size=3, pool_type="max", pool_stride=1, pool_padding=1)
        self._convprj = ConvLayer(
            input_channels, proj, 1, name="inception_" + name + "_3x3_proj")

    def forward(self, inputs):
        conv1 = self._conv1(inputs)

        conv3r = self._conv3r(inputs)
        conv3 = self._conv3(conv3r)

        conv5r = self._conv5r(inputs)
        conv5 = self._conv5(conv5r)

        pool = self._pool(inputs)
        convprj = self._convprj(pool)

        cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
littletomatodonkey's avatar
littletomatodonkey 已提交
92 93
        cat = fluid.layers.relu(cat)
        return cat
94 95


W
wqz960 已提交
96
class GoogleNetDY(fluid.dygraph.Layer):
97
    def __init__(self, class_dim=1000):
W
wqz960 已提交
98
        super(GoogleNetDY, self).__init__()
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        self._conv = ConvLayer(3, 64, 7, 2, name="conv1")
        self._pool = Pool2D(pool_size=3, pool_type="max", pool_stride=2)
        self._conv_1 = ConvLayer(64, 64, 1, name="conv2_1x1")
        self._conv_2 = ConvLayer(64, 192, 3, name="conv2_3x3")

        self._ince3a = Inception(
            192, 192, 64, 96, 128, 16, 32, 32, name="ince3a")
        self._ince3b = Inception(
            256, 256, 128, 128, 192, 32, 96, 64, name="ince3b")

        self._ince4a = Inception(
            480, 480, 192, 96, 208, 16, 48, 64, name="ince4a")
        self._ince4b = Inception(
            512, 512, 160, 112, 224, 24, 64, 64, name="ince4b")
        self._ince4c = Inception(
            512, 512, 128, 128, 256, 24, 64, 64, name="ince4c")
        self._ince4d = Inception(
            512, 512, 112, 144, 288, 32, 64, 64, name="ince4d")
        self._ince4e = Inception(
            528, 528, 256, 160, 320, 32, 128, 128, name="ince4e")

        self._ince5a = Inception(
            832, 832, 256, 160, 320, 32, 128, 128, name="ince5a")
        self._ince5b = Inception(
            832, 832, 384, 192, 384, 48, 128, 128, name="ince5b")

        self._pool_5 = Pool2D(pool_size=7, pool_type='avg', pool_stride=7)

        self._drop = fluid.dygraph.Dropout(p=0.4)
        self._fc_out = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out"),
            bias_attr=ParamAttr(name="out_offset"),
            act="softmax")
        self._pool_o1 = Pool2D(pool_size=5, pool_stride=3, pool_type="avg")
        self._conv_o1 = ConvLayer(512, 128, 1, name="conv_o1")
        self._fc_o1 = Linear(
            1152,
            1024,
            param_attr=xavier(2048, 1, "fc_o1"),
            bias_attr=ParamAttr(name="fc_o1_offset"),
            act="relu")
        self._drop_o1 = fluid.dygraph.Dropout(p=0.7)
        self._out1 = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out1"),
            bias_attr=ParamAttr(name="out1_offset"),
            act="softmax")
        self._pool_o2 = Pool2D(pool_size=5, pool_stride=3, pool_type='avg')
        self._conv_o2 = ConvLayer(528, 128, 1, name="conv_o2")
        self._fc_o2 = Linear(
            1152,
            1024,
            param_attr=xavier(2048, 1, "fc_o2"),
            bias_attr=ParamAttr(name="fc_o2_offset"))
        self._drop_o2 = fluid.dygraph.Dropout(p=0.7)
        self._out2 = Linear(
            1024,
            class_dim,
            param_attr=xavier(1024, 1, "out2"),
            bias_attr=ParamAttr(name="out2_offset"))

    def forward(self, inputs):
        x = self._conv(inputs)
        x = self._pool(x)
        x = self._conv_1(x)
        x = self._conv_2(x)
        x = self._pool(x)

        x = self._ince3a(x)
        x = self._ince3b(x)
        x = self._pool(x)

        ince4a = self._ince4a(x)
        x = self._ince4b(ince4a)
        x = self._ince4c(x)
        ince4d = self._ince4d(x)
        x = self._ince4e(ince4d)
        x = self._pool(x)

        x = self._ince5a(x)
        ince5b = self._ince5b(x)

        x = self._pool_5(ince5b)
        x = self._drop(x)
        x = fluid.layers.squeeze(x, axes=[2, 3])
        out = self._fc_out(x)

        x = self._pool_o1(ince4a)
        x = self._conv_o1(x)
        x = fluid.layers.flatten(x)
        x = self._fc_o1(x)
        x = self._drop_o1(x)
        out1 = self._out1(x)

        x = self._pool_o2(ince4d)
        x = self._conv_o2(x)
        x = fluid.layers.flatten(x)
        x = self._fc_o2(x)
        x = self._drop_o2(x)
        out2 = self._out2(x)
W
WuHaobo 已提交
202
        return [out, out1, out2]
203 204


W
wqz960 已提交
205 206
def GoogLeNet(**args):
    model = GoogleNetDY(**args)
littletomatodonkey's avatar
littletomatodonkey 已提交
207
    return model