README_en.md 7.0 KB
Newer Older
L
littletomatodonkey 已提交
1
[简体中文](README_ch.md) | English
W
weishengyu 已提交
2 3 4 5 6

# PaddleClas

## Introduction

L
lilithzhou 已提交
7
PaddleClas is an image recognition toolset for industry and academia, helping users train better computer vision models and apply them in real scenarios.
W
weishengyu 已提交
8

L
lilithzhou 已提交
9
**Recent updates**
W
weishengyu 已提交
10

D
dyning 已提交
11 12
- 🔥🔥🔥: 2021.06.16 PaddleClas release/2.2. Add metric learning and vector search modules. Add product recognition, animation character recognition, vehicle recognition and logo recognition. Added 30 pretrained models of LeViT, Twins, TNT, DLA, HarDNet, and RedNet, and the accuracy is roughly the same as that of the paper.
- 2021.05.14 Add `SwinTransformer` series pretrained models.
W
weishengyu 已提交
13 14 15 16
- [more](./docs/en/update_history_en.md)

## Features

L
lilithzhou 已提交
17 18
- A practical image recognition system consist of detection, feature learning and retrieval modules, widely applicable to all types of image recognition tasks.
Four sample solutions are provided, including product recognition, vehicle recognition, logo recognition and animation character recognition.
W
weishengyu 已提交
19

L
lilithzhou 已提交
20
- Rich library of pre-trained models: Provide a total of 164 ImageNet pre-trained models in 34 series, among which 6 selected series of models support fast structural modification.
W
weishengyu 已提交
21

L
lilithzhou 已提交
22
- Comprehensive and easy-to-use feature learning components: 12 metric learning methods are integrated and can be combined and switched at will through configuration files.
W
weishengyu 已提交
23

L
lilithzhou 已提交
24
- SSLD knowledge distillation: The 14 classification pre-training models generally improved their accuracy by more than 3%; among them, the ResNet50_vd model achieved a Top-1 accuracy of 84.0% on the Image-Net-1k dataset and the Res2Net200_vd pre-training model achieved a Top-1 accuracy of 85.1%.
W
weishengyu 已提交
25

L
lilithzhou 已提交
26
- Data augmentation: Provide 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, etc.  with detailed introduction, code replication and evaluation of effectiveness in a unified experimental environment.
W
weishengyu 已提交
27

L
littletomatodonkey 已提交
28

W
weishengyu 已提交
29

L
lilithzhou 已提交
30 31
## Image Recognition System Effect Demonstration
<div align="center">
L
littletomatodonkey 已提交
32
<img src="./docs/images/recognition_en.gif"  width = "400" />
L
lilithzhou 已提交
33
</div>
W
weishengyu 已提交
34

D
dyning 已提交
35 36
For more effect pictures, please see [Demo images](./docs/en/more_demo.md).

L
lilithzhou 已提交
37
## Welcome to Join the Technical Exchange Group
W
weishengyu 已提交
38

L
lilithzhou 已提交
39
* You can also scan the QR code below to join the PaddleClas WeChat group to get more efficient answers to your questions and to communicate with developers from all walks of life. We look forward to hearing from you.
W
weishengyu 已提交
40 41

<div align="center">
W
weishengyu 已提交
42
<img src="./docs/images/wx_group.jpeg"  width = "200" />
W
weishengyu 已提交
43 44
</div>

L
littletomatodonkey 已提交
45
## Quick Start
L
littletomatodonkey 已提交
46
Quick experience of image recognition:[Link](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
47 48 49

## Tutorials

B
Bin Lu 已提交
50
- [Quick Installation](./docs/en/tutorials/install_en.md)
W
weishengyu 已提交
51
- [Quick Start of Recognition](./docs/en/tutorials/quick_start_recognition_en.md)
W
weishengyu 已提交
52 53
- [Introduction to Image Recognition Systems](#Introduction_to_Image_Recognition_Systems)
- [Demo images](#Demo_images)
W
weishengyu 已提交
54
- Algorithms Introduction
W
weishengyu 已提交
55
    - [Backbone Network and Pre-trained Model Library](./docs/en/ImageNet_models.md)
L
littletomatodonkey 已提交
56
    - [Mainbody Detection](./docs/en/application/mainbody_detection_en.md)
W
weishengyu 已提交
57 58 59 60 61 62
    - [Image Classification](./docs/en/tutorials/image_classification_en.md)
    - [Feature Learning](./docs/en/application/feature_learning_en.md)
        - [Product Recognition](./docs/en/application/product_recognition_en.md)
        - [Vehicle Recognition](./docs/en/application/vehicle_recognition_en.md)
        - [Logo Recognition](./docs/en/application/logo_recognition_en.md)
        - [Animation Character Recognition](./docs/en/application/cartoon_character_recognition_en.md)
W
weishengyu 已提交
63
    - [Vector Search](./deploy/vector_search/README.md)
L
lilithzhou 已提交
64
- Models Training/Evaluation
W
weishengyu 已提交
65
    - [Image Classification](./docs/en/tutorials/getting_started_en.md)
W
weishengyu 已提交
66
    - [Feature Learning](./docs/en/tutorials/getting_started_retrieval_en.md)
W
weishengyu 已提交
67
- Inference Model Prediction
W
weishengyu 已提交
68
    - [Python Inference](./docs/en/inference.md)
W
weishengyu 已提交
69 70 71 72 73
    - [C++ Inference](./deploy/cpp/readme_en.md)(only support classification for now, recognition coming soon)
- Model Deploy (only support classification for now, recognition coming soon)
    - [Hub Serving Deployment](./deploy/hubserving/readme_en.md)
    - [Mobile Deployment](./deploy/lite/readme_en.md)
    - [Inference Using whl](./docs/en/whl_en.md)
L
lilithzhou 已提交
74
- Advanced Tutorial
W
weishengyu 已提交
75 76 77
    - [Knowledge Distillation](./docs/en/advanced_tutorials/distillation/distillation_en.md)
    - [Model Quantization](./docs/en/extension/paddle_quantization_en.md)
    - [Data Augmentation](./docs/en/advanced_tutorials/image_augmentation/ImageAugment_en.md)
W
weishengyu 已提交
78 79 80
- [License](#License)
- [Contribution](#Contribution)

W
weishengyu 已提交
81
<a name="Introduction_to_Image_Recognition_Systems"></a>
L
lilithzhou 已提交
82
## Introduction to Image Recognition Systems
W
weishengyu 已提交
83

L
lilithzhou 已提交
84
<div align="center">
L
littletomatodonkey 已提交
85
<img src="./docs/images/mainpage/recognition_pipeline_en.png"  width = "400" />
L
lilithzhou 已提交
86
</div>
W
weishengyu 已提交
87

L
lilithzhou 已提交
88 89 90 91
Image recognition can be divided into three steps:
- (1)Identify region proposal for target objects through a detection model;
- (2)Extract features for each region proposal;
- (3)Search features in the retrieval database and output results;
W
weishengyu 已提交
92

L
lilithzhou 已提交
93
For a new unknown category, there is no need to retrain the model, just prepare images of new category, extract features and update retrieval database and the category can be recognised.
W
weishengyu 已提交
94

W
weishengyu 已提交
95
<a name="Demo_images"></a>
96 97 98
## Demo images [more](./docs/en/more_demo.md)
- Product recognition
<div align="center">
B
Bin Lu 已提交
99
<img src="./docs/images/recognition/more_demo_images/output_product/channelhandle_5_en.jpg"  width = "400" />
100 101
</div>
<div align="center">
B
Bin Lu 已提交
102
<img src="./docs/images/recognition/more_demo_images/output_product/daoxiangcunjinzhubing_10_en.jpg"  width = "400" />
103 104 105 106
</div>

- Cartoon character recognition
<div align="center">
B
Bin Lu 已提交
107
<img src="./docs/images/recognition/more_demo_images/output_cartoon/labixiaoxin-005_en.jpeg"  width = "400" />
108 109
</div>
<div align="center">
B
Bin Lu 已提交
110
<img src="./docs/images/recognition/more_demo_images/output_cartoon/liuchuanfeng-010_en.jpeg"  width = "400" />
111 112 113 114
</div>

- Logo recognition
<div align="center">
B
Bin Lu 已提交
115
<img src="./docs/images/recognition/more_demo_images/output_logo/cctv_4_en.jpg"  width = "400" />
116 117
</div>
<div align="center">
B
Bin Lu 已提交
118
<img src="./docs/images/recognition/more_demo_images/output_logo/mangguo_8_en.jpeg"  width = "400" />
119
</div>
W
weishengyu 已提交
120

121 122
- Car recognition
<div align="center">
B
Bin Lu 已提交
123
<img src="./docs/images/recognition/more_demo_images/output_vehicle/audia5-115_en.jpeg"  width = "400" />
124 125
</div>
<div align="center">
B
Bin Lu 已提交
126
<img src="./docs/images/recognition/more_demo_images/output_vehicle/bentian-yage-101_en.jpeg"  width = "400" />
127 128 129
</div>

<a name="License"></a>
L
lilithzhou 已提交
130 131
## License
PaddleClas is released under the Apache 2.0 license <a href="https://github.com/PaddlePaddle/PaddleCLS/blob/master/LICENSE">Apache 2.0 license</a>
W
weishengyu 已提交
132 133 134 135 136 137


<a name="Contribution"></a>
## Contribution
Contributions are highly welcomed and we would really appreciate your feedback!!

L
lilithzhou 已提交
138

W
weishengyu 已提交
139 140 141
- Thank [nblib](https://github.com/nblib) to fix bug of RandErasing.
- Thank [chenpy228](https://github.com/chenpy228) to fix some typos PaddleClas.
- Thank [jm12138](https://github.com/jm12138) to add ViT, DeiT models and RepVGG models into PaddleClas.
L
lilithzhou 已提交
142
- Thank [FutureSI](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/76563) to parse and summarize the PaddleClas code.